Corrosion fatigue behavior of a Mg-based bulk metallic glass in a simulated physiological environment

Due to the superior property profile, Mg-based bulk metallic glasses (BMGs) are potential biodegradable biomaterials. Nevertheless, their corrosion fatigue behavior, which is essential for understanding the mechanical performance under joint actions of the cyclic loading and the aggressive human bod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Intermetallics 2016-06, Vol.73 (C), p.31-39
Hauptverfasser: Li, Haifei, Liu, Ying, Pang, Shujie, Liaw, Peter K., Zhang, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 39
container_issue C
container_start_page 31
container_title Intermetallics
container_volume 73
creator Li, Haifei
Liu, Ying
Pang, Shujie
Liaw, Peter K.
Zhang, Tao
description Due to the superior property profile, Mg-based bulk metallic glasses (BMGs) are potential biodegradable biomaterials. Nevertheless, their corrosion fatigue behavior, which is essential for understanding the mechanical performance under joint actions of the cyclic loading and the aggressive human body environment, remains unexplored. In the present study, compression-compression fatigue experiments were conducted in air and in a simulated physiological environment to study the fatigue and corrosion fatigue behaviors of Mg66Zn30Ca3Sr1 BMG. The fatigue-endurance limits of Mg66Zn30Ca3Sr1 BMG in air and in the simulated physiological environment were 370 and 150 MPa, respectively, suggesting its qualified fatigue property for biomaterials and the detrimental effect of the corrosive environment on the fatigue resistance. During the fatigue tests, Mg66Zn30Ca3Sr1 BMG went through peeling-off fractures and then the final fragmented fracture. The corrosion in the simulated physiological environment, which provided easy crack-initiation sites for the peeling-off fractures and the final collapse, was responsible for the inferior fatigue resistance to that in air. •Mg-Zn-Ca-Sr BMG exhibited fatigue strengths of 370 MPa in air and 150 MPa in PBS.•Mg-Zn-Ca-Sr BMG underwent peeling-off fractures before the final fragmented fracture during the fatigue tests.•The corrosion of the Mg-Zn-Ca-Sr BMG in PBS provided easy crack-initiation sites.•Nanocrystallization was observed in the Mg-Zn-Ca-Sr BMG after the mechanical tests.
doi_str_mv 10.1016/j.intermet.2016.03.003
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1359218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0966979516300292</els_id><sourcerecordid>S0966979516300292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-f6d9ea834375d69f01eef0b4a6e5dd32d67d1473c23abcf083c6864e4cb17f493</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKd_QYL3rUnTpu2dMvyCiTd6HdLkpMvskpFkg_17M6bXXh0OvB-8D0K3lJSUUH6_Lq1LEDaQyir_JWElIewMzWjX9gWpKD9HM9JzXvRt31yiqxjXhNCWsGaGYOFD8NF6h41MdtwBHmAl99YH7A2W-H0sBhlB42E3feNcIqfJKjxOMkZsXVZEu9lNMmXJdnXISZMfrZITBre3wbsNuHSNLoycItz83jn6en76XLwWy4-Xt8XjslB1w1JhuO5BdqxmbaN5bwgFMGSoJYdGa1Zp3mpat0xVTA7KkI4p3vEaajXQ1tQ9m6O7U66PyYqobAK1Ut45UElQ1vQV7bKIn0QqD48BjNgGu5HhICgRR6JiLf6IiiNRQZjIRLPx4WSEPGFvIRwbwCnQNhwLtLf_RfwA6UCE1g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Corrosion fatigue behavior of a Mg-based bulk metallic glass in a simulated physiological environment</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Li, Haifei ; Liu, Ying ; Pang, Shujie ; Liaw, Peter K. ; Zhang, Tao</creator><creatorcontrib>Li, Haifei ; Liu, Ying ; Pang, Shujie ; Liaw, Peter K. ; Zhang, Tao</creatorcontrib><description>Due to the superior property profile, Mg-based bulk metallic glasses (BMGs) are potential biodegradable biomaterials. Nevertheless, their corrosion fatigue behavior, which is essential for understanding the mechanical performance under joint actions of the cyclic loading and the aggressive human body environment, remains unexplored. In the present study, compression-compression fatigue experiments were conducted in air and in a simulated physiological environment to study the fatigue and corrosion fatigue behaviors of Mg66Zn30Ca3Sr1 BMG. The fatigue-endurance limits of Mg66Zn30Ca3Sr1 BMG in air and in the simulated physiological environment were 370 and 150 MPa, respectively, suggesting its qualified fatigue property for biomaterials and the detrimental effect of the corrosive environment on the fatigue resistance. During the fatigue tests, Mg66Zn30Ca3Sr1 BMG went through peeling-off fractures and then the final fragmented fracture. The corrosion in the simulated physiological environment, which provided easy crack-initiation sites for the peeling-off fractures and the final collapse, was responsible for the inferior fatigue resistance to that in air. •Mg-Zn-Ca-Sr BMG exhibited fatigue strengths of 370 MPa in air and 150 MPa in PBS.•Mg-Zn-Ca-Sr BMG underwent peeling-off fractures before the final fragmented fracture during the fatigue tests.•The corrosion of the Mg-Zn-Ca-Sr BMG in PBS provided easy crack-initiation sites.•Nanocrystallization was observed in the Mg-Zn-Ca-Sr BMG after the mechanical tests.</description><identifier>ISSN: 0966-9795</identifier><identifier>EISSN: 1879-0216</identifier><identifier>DOI: 10.1016/j.intermet.2016.03.003</identifier><language>eng</language><publisher>United Kingdom: Elsevier Ltd</publisher><subject>Biomedical ; Corrosion ; Fatigue resistance ; Metallic glasses ; Microscopy</subject><ispartof>Intermetallics, 2016-06, Vol.73 (C), p.31-39</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-f6d9ea834375d69f01eef0b4a6e5dd32d67d1473c23abcf083c6864e4cb17f493</citedby><cites>FETCH-LOGICAL-c453t-f6d9ea834375d69f01eef0b4a6e5dd32d67d1473c23abcf083c6864e4cb17f493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.intermet.2016.03.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1359218$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Haifei</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Pang, Shujie</creatorcontrib><creatorcontrib>Liaw, Peter K.</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><title>Corrosion fatigue behavior of a Mg-based bulk metallic glass in a simulated physiological environment</title><title>Intermetallics</title><description>Due to the superior property profile, Mg-based bulk metallic glasses (BMGs) are potential biodegradable biomaterials. Nevertheless, their corrosion fatigue behavior, which is essential for understanding the mechanical performance under joint actions of the cyclic loading and the aggressive human body environment, remains unexplored. In the present study, compression-compression fatigue experiments were conducted in air and in a simulated physiological environment to study the fatigue and corrosion fatigue behaviors of Mg66Zn30Ca3Sr1 BMG. The fatigue-endurance limits of Mg66Zn30Ca3Sr1 BMG in air and in the simulated physiological environment were 370 and 150 MPa, respectively, suggesting its qualified fatigue property for biomaterials and the detrimental effect of the corrosive environment on the fatigue resistance. During the fatigue tests, Mg66Zn30Ca3Sr1 BMG went through peeling-off fractures and then the final fragmented fracture. The corrosion in the simulated physiological environment, which provided easy crack-initiation sites for the peeling-off fractures and the final collapse, was responsible for the inferior fatigue resistance to that in air. •Mg-Zn-Ca-Sr BMG exhibited fatigue strengths of 370 MPa in air and 150 MPa in PBS.•Mg-Zn-Ca-Sr BMG underwent peeling-off fractures before the final fragmented fracture during the fatigue tests.•The corrosion of the Mg-Zn-Ca-Sr BMG in PBS provided easy crack-initiation sites.•Nanocrystallization was observed in the Mg-Zn-Ca-Sr BMG after the mechanical tests.</description><subject>Biomedical</subject><subject>Corrosion</subject><subject>Fatigue resistance</subject><subject>Metallic glasses</subject><subject>Microscopy</subject><issn>0966-9795</issn><issn>1879-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKd_QYL3rUnTpu2dMvyCiTd6HdLkpMvskpFkg_17M6bXXh0OvB-8D0K3lJSUUH6_Lq1LEDaQyir_JWElIewMzWjX9gWpKD9HM9JzXvRt31yiqxjXhNCWsGaGYOFD8NF6h41MdtwBHmAl99YH7A2W-H0sBhlB42E3feNcIqfJKjxOMkZsXVZEu9lNMmXJdnXISZMfrZITBre3wbsNuHSNLoycItz83jn6en76XLwWy4-Xt8XjslB1w1JhuO5BdqxmbaN5bwgFMGSoJYdGa1Zp3mpat0xVTA7KkI4p3vEaajXQ1tQ9m6O7U66PyYqobAK1Ut45UElQ1vQV7bKIn0QqD48BjNgGu5HhICgRR6JiLf6IiiNRQZjIRLPx4WSEPGFvIRwbwCnQNhwLtLf_RfwA6UCE1g</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Li, Haifei</creator><creator>Liu, Ying</creator><creator>Pang, Shujie</creator><creator>Liaw, Peter K.</creator><creator>Zhang, Tao</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>201606</creationdate><title>Corrosion fatigue behavior of a Mg-based bulk metallic glass in a simulated physiological environment</title><author>Li, Haifei ; Liu, Ying ; Pang, Shujie ; Liaw, Peter K. ; Zhang, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-f6d9ea834375d69f01eef0b4a6e5dd32d67d1473c23abcf083c6864e4cb17f493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biomedical</topic><topic>Corrosion</topic><topic>Fatigue resistance</topic><topic>Metallic glasses</topic><topic>Microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Haifei</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Pang, Shujie</creatorcontrib><creatorcontrib>Liaw, Peter K.</creatorcontrib><creatorcontrib>Zhang, Tao</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Intermetallics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Haifei</au><au>Liu, Ying</au><au>Pang, Shujie</au><au>Liaw, Peter K.</au><au>Zhang, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion fatigue behavior of a Mg-based bulk metallic glass in a simulated physiological environment</atitle><jtitle>Intermetallics</jtitle><date>2016-06</date><risdate>2016</risdate><volume>73</volume><issue>C</issue><spage>31</spage><epage>39</epage><pages>31-39</pages><issn>0966-9795</issn><eissn>1879-0216</eissn><abstract>Due to the superior property profile, Mg-based bulk metallic glasses (BMGs) are potential biodegradable biomaterials. Nevertheless, their corrosion fatigue behavior, which is essential for understanding the mechanical performance under joint actions of the cyclic loading and the aggressive human body environment, remains unexplored. In the present study, compression-compression fatigue experiments were conducted in air and in a simulated physiological environment to study the fatigue and corrosion fatigue behaviors of Mg66Zn30Ca3Sr1 BMG. The fatigue-endurance limits of Mg66Zn30Ca3Sr1 BMG in air and in the simulated physiological environment were 370 and 150 MPa, respectively, suggesting its qualified fatigue property for biomaterials and the detrimental effect of the corrosive environment on the fatigue resistance. During the fatigue tests, Mg66Zn30Ca3Sr1 BMG went through peeling-off fractures and then the final fragmented fracture. The corrosion in the simulated physiological environment, which provided easy crack-initiation sites for the peeling-off fractures and the final collapse, was responsible for the inferior fatigue resistance to that in air. •Mg-Zn-Ca-Sr BMG exhibited fatigue strengths of 370 MPa in air and 150 MPa in PBS.•Mg-Zn-Ca-Sr BMG underwent peeling-off fractures before the final fragmented fracture during the fatigue tests.•The corrosion of the Mg-Zn-Ca-Sr BMG in PBS provided easy crack-initiation sites.•Nanocrystallization was observed in the Mg-Zn-Ca-Sr BMG after the mechanical tests.</abstract><cop>United Kingdom</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.intermet.2016.03.003</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0966-9795
ispartof Intermetallics, 2016-06, Vol.73 (C), p.31-39
issn 0966-9795
1879-0216
language eng
recordid cdi_osti_scitechconnect_1359218
source ScienceDirect Journals (5 years ago - present)
subjects Biomedical
Corrosion
Fatigue resistance
Metallic glasses
Microscopy
title Corrosion fatigue behavior of a Mg-based bulk metallic glass in a simulated physiological environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A52%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20fatigue%20behavior%20of%20a%20Mg-based%20bulk%20metallic%20glass%20in%20a%20simulated%20physiological%20environment&rft.jtitle=Intermetallics&rft.au=Li,%20Haifei&rft.date=2016-06&rft.volume=73&rft.issue=C&rft.spage=31&rft.epage=39&rft.pages=31-39&rft.issn=0966-9795&rft.eissn=1879-0216&rft_id=info:doi/10.1016/j.intermet.2016.03.003&rft_dat=%3Celsevier_osti_%3ES0966979516300292%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0966979516300292&rfr_iscdi=true