Corrosion fatigue behavior of a Mg-based bulk metallic glass in a simulated physiological environment
Due to the superior property profile, Mg-based bulk metallic glasses (BMGs) are potential biodegradable biomaterials. Nevertheless, their corrosion fatigue behavior, which is essential for understanding the mechanical performance under joint actions of the cyclic loading and the aggressive human bod...
Gespeichert in:
Veröffentlicht in: | Intermetallics 2016-06, Vol.73 (C), p.31-39 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the superior property profile, Mg-based bulk metallic glasses (BMGs) are potential biodegradable biomaterials. Nevertheless, their corrosion fatigue behavior, which is essential for understanding the mechanical performance under joint actions of the cyclic loading and the aggressive human body environment, remains unexplored. In the present study, compression-compression fatigue experiments were conducted in air and in a simulated physiological environment to study the fatigue and corrosion fatigue behaviors of Mg66Zn30Ca3Sr1 BMG. The fatigue-endurance limits of Mg66Zn30Ca3Sr1 BMG in air and in the simulated physiological environment were 370 and 150 MPa, respectively, suggesting its qualified fatigue property for biomaterials and the detrimental effect of the corrosive environment on the fatigue resistance. During the fatigue tests, Mg66Zn30Ca3Sr1 BMG went through peeling-off fractures and then the final fragmented fracture. The corrosion in the simulated physiological environment, which provided easy crack-initiation sites for the peeling-off fractures and the final collapse, was responsible for the inferior fatigue resistance to that in air.
•Mg-Zn-Ca-Sr BMG exhibited fatigue strengths of 370 MPa in air and 150 MPa in PBS.•Mg-Zn-Ca-Sr BMG underwent peeling-off fractures before the final fragmented fracture during the fatigue tests.•The corrosion of the Mg-Zn-Ca-Sr BMG in PBS provided easy crack-initiation sites.•Nanocrystallization was observed in the Mg-Zn-Ca-Sr BMG after the mechanical tests. |
---|---|
ISSN: | 0966-9795 1879-0216 |
DOI: | 10.1016/j.intermet.2016.03.003 |