In situ Visualization of State-of-Charge Heterogeneity within a LiCoO2 Particle that Evolves upon Cycling at Different Rates

For designing new battery systems with higher energy density and longer cycle life, it is important to understand the degradation mechanism of the electrode material, especially at the individual particle level. Using in situ transmission X-ray microscopy (TXM) coupled to a pouch cell setup, the inh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS energy letters 2017-05, Vol.2 (5), p.1240-1245
Hauptverfasser: Xu, Yahong, Hu, Enyuan, Zhang, Kai, Wang, Xuelong, Borzenets, Valery, Sun, Zhihong, Pianetta, Piero, Yu, Xiqian, Liu, Yijin, Yang, Xiao-Qing, Li, Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For designing new battery systems with higher energy density and longer cycle life, it is important to understand the degradation mechanism of the electrode material, especially at the individual particle level. Using in situ transmission X-ray microscopy (TXM) coupled to a pouch cell setup, the inhomogeneous Li distribution as well as the formation, population, and evolution of inactive domains in a single LiCoO2 particle were visualized as it was cycled for many times. It is found that the percentage of the particle that fully recovered to the pristine state is strongly related to the cycling rate. Interestingly, we also observed the evolution of the inactive region within the particle during long-term cycling. The relationship between morphological degradation and chemical inhomogeneity, including the formation of unanticipated Co metal phase, is also observed. Our work highlights the capability of in situ TXM for studying the degradation mechanism of materials in LIBs.
ISSN:2380-8195
2380-8195
DOI:10.1021/acsenergylett.7b00263