Atomic Scale Dynamics of Contact Formation in the Cross-Section of InGaAs Nanowire Channels

Alloyed and compound contacts between metal and semiconductor transistor channels enable self-aligned gate processes which play a significant role in transistor scaling. At nanoscale dimensions and for nanowire channels, prior experiments focused on reactions along the channel length, but the early...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2017-04, Vol.17 (4), p.2189-2196
Hauptverfasser: Chen, Renjie, Jungjohann, Katherine L, Mook, William M, Nogan, John, Dayeh, Shadi A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Alloyed and compound contacts between metal and semiconductor transistor channels enable self-aligned gate processes which play a significant role in transistor scaling. At nanoscale dimensions and for nanowire channels, prior experiments focused on reactions along the channel length, but the early stage of reaction in their cross sections remains unknown. Here, we report on the dynamics of the solid-state reaction between metal (Ni) and semiconductor (In0.53Ga0.47As), along the cross-section of nanowires that are 15 nm in width. Unlike planar structures where crystalline nickelide readily forms at conventional, low alloying temperatures, nanowires exhibit a solid-state amorphization step that can undergo a crystal regrowth step at elevated temperatures. In this study, we capture the layer-by-layer reaction mechanism and growth rate anisotropy using in situ transmission electron microscopy (TEM). Our kinetic model depicts this new, in-plane contact formation which could pave the way for engineered nanoscale transistors.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.6b04713