Low-Temperature Atomic Layer Deposition of CuSbS2 for Thin-Film Photovoltaics
Copper antimony sulfide (CuSbS2) has been gaining traction as an earth-abundant absorber for thin-film photovoltaics given its near ideal band gap for solar energy conversion (∼1.5 eV), large absorption coefficient (>104 cm–1), and elemental abundance. Through careful in situ analysis of the depo...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2017-02, Vol.9 (5), p.4667-4673 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Copper antimony sulfide (CuSbS2) has been gaining traction as an earth-abundant absorber for thin-film photovoltaics given its near ideal band gap for solar energy conversion (∼1.5 eV), large absorption coefficient (>104 cm–1), and elemental abundance. Through careful in situ analysis of the deposition conditions, a low-temperature route to CuSbS2 thin films via atomic layer deposition has been developed. After a short (15 min) postprocess anneal at 225 °C, the ALD-grown CuSbS2 films were crystalline with micron-sized grains, exhibited a band gap of 1.6 eV and an absorption coefficient >104 cm–1, as well as a hole concentration of 1015 cm–3. Finally, the ALD-grown CuSbS2 films were paired with ALD-grown TiO2 to form a photovoltaic device. This photovoltaic device architecture represents one of a very limited number of Cd-free CuSbS2 PV device stacks reported to date, and it is the first to demonstrate an open-circuit voltage on par with CuSbS2/CdS heterojunction PV devices. While far from optimized, this work demonstrates the potential for ALD-grown CuSbS2 thin films in environmentally benign photovoltaics. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.6b13033 |