Lone-Pair Stabilization in Transparent Amorphous Tin Oxides: A Potential Route to p‑Type Conduction Pathways

The electronic and atomic structures of amorphous transparent tin oxides have been investigated by a combination of X-ray spectroscopy and atomistic calculations. Crystalline SnO is a promising p-type transparent oxide semiconductor due to a complex lone-pair hybridization that affords both optical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2016-07, Vol.28 (13), p.4706-4713
Hauptverfasser: Wahila, Matthew J, Butler, Keith T, Lebens-Higgins, Zachary W, Hendon, Christopher H, Nandur, Abhishek S, Treharne, Robert E, Quackenbush, Nicholas F, Sallis, Shawn, Mason, Katie, Paik, Hanjong, Schlom, Darrell G, Woicik, Joseph C, Guo, Jinghua, Arena, Dario A, White, Bruce E, Watson, Graeme W, Walsh, Aron, Piper, Louis F. J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The electronic and atomic structures of amorphous transparent tin oxides have been investigated by a combination of X-ray spectroscopy and atomistic calculations. Crystalline SnO is a promising p-type transparent oxide semiconductor due to a complex lone-pair hybridization that affords both optical transparency despite a small electronic band gap and spherical s-orbital character at the valence band edge. We find that both of these desirable properties (transparency and s-orbital valence band character) are retained upon amorphization despite the disruption of the layered lone-pair states by structural disorder. We explain the anomalously large band gap widening necessary to maintain transparency in terms of lone-pair stabilization via atomic clustering. Our understanding of this mechanism suggests that continuous hole conduction pathways along extended lone pair clusters should be possible under certain stoichiometries. Moreover, these findings should be applicable to other lone-pair active semiconductors.
ISSN:0897-4756
1520-5002
DOI:10.1021/acs.chemmater.6b01608