The EED protein–protein interaction inhibitor A-395 inactivates the PRC2 complex
A pyrrolidine-based small-molecule inhibitor competes with H3K27me3 for binding to EED leading to inactivation of PRC2 and global reduction in H3K27me3 levels. Polycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histon...
Gespeichert in:
Veröffentlicht in: | Nature chemical biology 2017-04, Vol.13 (4), p.389-395 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A pyrrolidine-based small-molecule inhibitor competes with H3K27me3 for binding to EED leading to inactivation of PRC2 and global reduction in H3K27me3 levels.
Polycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histone H3 at lysine 27 (H3K27me3), which leads to gene silencing, and is dysregulated in many cancers. The embryonic ectoderm development (EED) protein is an essential subunit of PRC2 that has both a scaffolding function and an H3K27me3-binding function. Here we report the identification of A-395, a potent antagonist of the H3K27me3 binding functions of EED. Structural studies demonstrate that A-395 binds to EED in the H3K27me3-binding pocket, thereby preventing allosteric activation of the catalytic activity of PRC2. Phenotypic effects observed
in vitro
and
in vivo
are similar to those of known PRC2 enzymatic inhibitors; however, A-395 retains potent activity against cell lines resistant to the catalytic inhibitors. A-395 represents a first-in-class antagonist of PRC2 protein–protein interactions (PPI) for use as a chemical probe to investigate the roles of EED-containing protein complexes. |
---|---|
ISSN: | 1552-4450 1552-4469 |
DOI: | 10.1038/nchembio.2306 |