Defect chemistry and resistance degradation in Fe-doped SrTiO3 single crystal
Defect chemistry and transport in Fe-doped SrTiO3 single crystal are studied to understand its resistance degradation mechanism. The temporal evolution of electric conductivity under a voltage stress was obtained computationally by solving the transport equations for ionic and electronic defects cou...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2016-04, Vol.108 (C), p.229-240 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 240 |
---|---|
container_issue | C |
container_start_page | 229 |
container_title | Acta materialia |
container_volume | 108 |
creator | Wang, Jian-Jun Huang, Hou-Bing Bayer, Thorsten J.M. Moballegh, Ali Cao, Ye Klein, Andreas Dickey, Elizabeth C. Irving, Douglas L. Randall, Clive A. Chen, Long-Qing |
description | Defect chemistry and transport in Fe-doped SrTiO3 single crystal are studied to understand its resistance degradation mechanism. The temporal evolution of electric conductivity under a voltage stress was obtained computationally by solving the transport equations for ionic and electronic defects coupled with the defect reaction equilibrium equations. The computational results are compared to the corresponding experimental measurement under similar conditions. It is shown that the local electron and hole concentrations are controlled by the local electronic defect equilibria rather than by their quasi-steady state diffusional transport. It is the electric field-induced migration of oxygen vacancies and the subsequent instantaneous reestablishment of the local defect equilibria that lead to the resistance degradation. The resistance degradation behavior and the defect distributions under a long-term voltage stress are strongly influenced by the sample-annealing oxygen partial pressure, degrading electric field, and temperature. The present study contributes to the understanding of resistance degradation mechanism and provides guidance to improve the lifetime and reliability of wide band-gap semiconducting capacitors.
[Display omitted] |
doi_str_mv | 10.1016/j.actamat.2016.02.022 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1348247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645416300969</els_id><sourcerecordid>1808114676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-e0a18e3d9691825f947ef045a4d64c7936dddb3cb91be35bc71079893e6283a63</originalsourceid><addsrcrecordid>eNqFUE1LAzEUXETBWv0JQvDkZdd87WZzEqlWhUoP1nPIJm_blO1uTaLQf2-W9i4MvPdgZngzWXZLcEEwqR62hTZR73QsaDoLTBPoWTYhtWA55SU7TzsrZV7xkl9mVyFsMSZUcDzJPp6hBROR2cDOhegPSPcWeQjp0L0BZGHttdXRDT1yPZpDboc9WPTpV27JUHD9ugNk_CHxu-vsotVdgJvTnGZf85fV7C1fLF_fZ0-L3HBWxhywJjUwKytJalq2kgtoMS81txU3QrLKWtsw00jSACsbIwgWspYMKlozXbFpdnf0HUJ0KhgXwWzM0PcpiiKM15SLRLo_kvZ--P6BEFVKaKDrdA_DT1CkxjUhvBKjX3mkGj-E4KFVe-922h8UwWrsWG3VqWM1dqwwTaBJ93jUQQr768CPv0CqzTo_vmIH94_DH2dHhpA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808114676</pqid></control><display><type>article</type><title>Defect chemistry and resistance degradation in Fe-doped SrTiO3 single crystal</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, Jian-Jun ; Huang, Hou-Bing ; Bayer, Thorsten J.M. ; Moballegh, Ali ; Cao, Ye ; Klein, Andreas ; Dickey, Elizabeth C. ; Irving, Douglas L. ; Randall, Clive A. ; Chen, Long-Qing</creator><creatorcontrib>Wang, Jian-Jun ; Huang, Hou-Bing ; Bayer, Thorsten J.M. ; Moballegh, Ali ; Cao, Ye ; Klein, Andreas ; Dickey, Elizabeth C. ; Irving, Douglas L. ; Randall, Clive A. ; Chen, Long-Qing</creatorcontrib><description>Defect chemistry and transport in Fe-doped SrTiO3 single crystal are studied to understand its resistance degradation mechanism. The temporal evolution of electric conductivity under a voltage stress was obtained computationally by solving the transport equations for ionic and electronic defects coupled with the defect reaction equilibrium equations. The computational results are compared to the corresponding experimental measurement under similar conditions. It is shown that the local electron and hole concentrations are controlled by the local electronic defect equilibria rather than by their quasi-steady state diffusional transport. It is the electric field-induced migration of oxygen vacancies and the subsequent instantaneous reestablishment of the local defect equilibria that lead to the resistance degradation. The resistance degradation behavior and the defect distributions under a long-term voltage stress are strongly influenced by the sample-annealing oxygen partial pressure, degrading electric field, and temperature. The present study contributes to the understanding of resistance degradation mechanism and provides guidance to improve the lifetime and reliability of wide band-gap semiconducting capacitors.
[Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2016.02.022</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Chemistry ; Crystal defects ; Defect ; Defect transport ; Degradation ; Electric potential ; Electronics ; Oxygen ; Oxygen vacancies ; Resistance degradation ; SrTiO3 ; Stress concentration ; Strontium titanates ; Voltage</subject><ispartof>Acta materialia, 2016-04, Vol.108 (C), p.229-240</ispartof><rights>2016 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-e0a18e3d9691825f947ef045a4d64c7936dddb3cb91be35bc71079893e6283a63</citedby><cites>FETCH-LOGICAL-c435t-e0a18e3d9691825f947ef045a4d64c7936dddb3cb91be35bc71079893e6283a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645416300969$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1348247$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Jian-Jun</creatorcontrib><creatorcontrib>Huang, Hou-Bing</creatorcontrib><creatorcontrib>Bayer, Thorsten J.M.</creatorcontrib><creatorcontrib>Moballegh, Ali</creatorcontrib><creatorcontrib>Cao, Ye</creatorcontrib><creatorcontrib>Klein, Andreas</creatorcontrib><creatorcontrib>Dickey, Elizabeth C.</creatorcontrib><creatorcontrib>Irving, Douglas L.</creatorcontrib><creatorcontrib>Randall, Clive A.</creatorcontrib><creatorcontrib>Chen, Long-Qing</creatorcontrib><title>Defect chemistry and resistance degradation in Fe-doped SrTiO3 single crystal</title><title>Acta materialia</title><description>Defect chemistry and transport in Fe-doped SrTiO3 single crystal are studied to understand its resistance degradation mechanism. The temporal evolution of electric conductivity under a voltage stress was obtained computationally by solving the transport equations for ionic and electronic defects coupled with the defect reaction equilibrium equations. The computational results are compared to the corresponding experimental measurement under similar conditions. It is shown that the local electron and hole concentrations are controlled by the local electronic defect equilibria rather than by their quasi-steady state diffusional transport. It is the electric field-induced migration of oxygen vacancies and the subsequent instantaneous reestablishment of the local defect equilibria that lead to the resistance degradation. The resistance degradation behavior and the defect distributions under a long-term voltage stress are strongly influenced by the sample-annealing oxygen partial pressure, degrading electric field, and temperature. The present study contributes to the understanding of resistance degradation mechanism and provides guidance to improve the lifetime and reliability of wide band-gap semiconducting capacitors.
[Display omitted]</description><subject>Chemistry</subject><subject>Crystal defects</subject><subject>Defect</subject><subject>Defect transport</subject><subject>Degradation</subject><subject>Electric potential</subject><subject>Electronics</subject><subject>Oxygen</subject><subject>Oxygen vacancies</subject><subject>Resistance degradation</subject><subject>SrTiO3</subject><subject>Stress concentration</subject><subject>Strontium titanates</subject><subject>Voltage</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFUE1LAzEUXETBWv0JQvDkZdd87WZzEqlWhUoP1nPIJm_blO1uTaLQf2-W9i4MvPdgZngzWXZLcEEwqR62hTZR73QsaDoLTBPoWTYhtWA55SU7TzsrZV7xkl9mVyFsMSZUcDzJPp6hBROR2cDOhegPSPcWeQjp0L0BZGHttdXRDT1yPZpDboc9WPTpV27JUHD9ugNk_CHxu-vsotVdgJvTnGZf85fV7C1fLF_fZ0-L3HBWxhywJjUwKytJalq2kgtoMS81txU3QrLKWtsw00jSACsbIwgWspYMKlozXbFpdnf0HUJ0KhgXwWzM0PcpiiKM15SLRLo_kvZ--P6BEFVKaKDrdA_DT1CkxjUhvBKjX3mkGj-E4KFVe-922h8UwWrsWG3VqWM1dqwwTaBJ93jUQQr768CPv0CqzTo_vmIH94_DH2dHhpA</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Wang, Jian-Jun</creator><creator>Huang, Hou-Bing</creator><creator>Bayer, Thorsten J.M.</creator><creator>Moballegh, Ali</creator><creator>Cao, Ye</creator><creator>Klein, Andreas</creator><creator>Dickey, Elizabeth C.</creator><creator>Irving, Douglas L.</creator><creator>Randall, Clive A.</creator><creator>Chen, Long-Qing</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20160401</creationdate><title>Defect chemistry and resistance degradation in Fe-doped SrTiO3 single crystal</title><author>Wang, Jian-Jun ; Huang, Hou-Bing ; Bayer, Thorsten J.M. ; Moballegh, Ali ; Cao, Ye ; Klein, Andreas ; Dickey, Elizabeth C. ; Irving, Douglas L. ; Randall, Clive A. ; Chen, Long-Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-e0a18e3d9691825f947ef045a4d64c7936dddb3cb91be35bc71079893e6283a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chemistry</topic><topic>Crystal defects</topic><topic>Defect</topic><topic>Defect transport</topic><topic>Degradation</topic><topic>Electric potential</topic><topic>Electronics</topic><topic>Oxygen</topic><topic>Oxygen vacancies</topic><topic>Resistance degradation</topic><topic>SrTiO3</topic><topic>Stress concentration</topic><topic>Strontium titanates</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Jian-Jun</creatorcontrib><creatorcontrib>Huang, Hou-Bing</creatorcontrib><creatorcontrib>Bayer, Thorsten J.M.</creatorcontrib><creatorcontrib>Moballegh, Ali</creatorcontrib><creatorcontrib>Cao, Ye</creatorcontrib><creatorcontrib>Klein, Andreas</creatorcontrib><creatorcontrib>Dickey, Elizabeth C.</creatorcontrib><creatorcontrib>Irving, Douglas L.</creatorcontrib><creatorcontrib>Randall, Clive A.</creatorcontrib><creatorcontrib>Chen, Long-Qing</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Jian-Jun</au><au>Huang, Hou-Bing</au><au>Bayer, Thorsten J.M.</au><au>Moballegh, Ali</au><au>Cao, Ye</au><au>Klein, Andreas</au><au>Dickey, Elizabeth C.</au><au>Irving, Douglas L.</au><au>Randall, Clive A.</au><au>Chen, Long-Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect chemistry and resistance degradation in Fe-doped SrTiO3 single crystal</atitle><jtitle>Acta materialia</jtitle><date>2016-04-01</date><risdate>2016</risdate><volume>108</volume><issue>C</issue><spage>229</spage><epage>240</epage><pages>229-240</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Defect chemistry and transport in Fe-doped SrTiO3 single crystal are studied to understand its resistance degradation mechanism. The temporal evolution of electric conductivity under a voltage stress was obtained computationally by solving the transport equations for ionic and electronic defects coupled with the defect reaction equilibrium equations. The computational results are compared to the corresponding experimental measurement under similar conditions. It is shown that the local electron and hole concentrations are controlled by the local electronic defect equilibria rather than by their quasi-steady state diffusional transport. It is the electric field-induced migration of oxygen vacancies and the subsequent instantaneous reestablishment of the local defect equilibria that lead to the resistance degradation. The resistance degradation behavior and the defect distributions under a long-term voltage stress are strongly influenced by the sample-annealing oxygen partial pressure, degrading electric field, and temperature. The present study contributes to the understanding of resistance degradation mechanism and provides guidance to improve the lifetime and reliability of wide band-gap semiconducting capacitors.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2016.02.022</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2016-04, Vol.108 (C), p.229-240 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_osti_scitechconnect_1348247 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Chemistry Crystal defects Defect Defect transport Degradation Electric potential Electronics Oxygen Oxygen vacancies Resistance degradation SrTiO3 Stress concentration Strontium titanates Voltage |
title | Defect chemistry and resistance degradation in Fe-doped SrTiO3 single crystal |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T19%3A28%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20chemistry%20and%20resistance%20degradation%20in%20Fe-doped%20SrTiO3%20single%20crystal&rft.jtitle=Acta%20materialia&rft.au=Wang,%20Jian-Jun&rft.date=2016-04-01&rft.volume=108&rft.issue=C&rft.spage=229&rft.epage=240&rft.pages=229-240&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2016.02.022&rft_dat=%3Cproquest_osti_%3E1808114676%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808114676&rft_id=info:pmid/&rft_els_id=S1359645416300969&rfr_iscdi=true |