Defect chemistry and resistance degradation in Fe-doped SrTiO3 single crystal

Defect chemistry and transport in Fe-doped SrTiO3 single crystal are studied to understand its resistance degradation mechanism. The temporal evolution of electric conductivity under a voltage stress was obtained computationally by solving the transport equations for ionic and electronic defects cou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2016-04, Vol.108 (C), p.229-240
Hauptverfasser: Wang, Jian-Jun, Huang, Hou-Bing, Bayer, Thorsten J.M., Moballegh, Ali, Cao, Ye, Klein, Andreas, Dickey, Elizabeth C., Irving, Douglas L., Randall, Clive A., Chen, Long-Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Defect chemistry and transport in Fe-doped SrTiO3 single crystal are studied to understand its resistance degradation mechanism. The temporal evolution of electric conductivity under a voltage stress was obtained computationally by solving the transport equations for ionic and electronic defects coupled with the defect reaction equilibrium equations. The computational results are compared to the corresponding experimental measurement under similar conditions. It is shown that the local electron and hole concentrations are controlled by the local electronic defect equilibria rather than by their quasi-steady state diffusional transport. It is the electric field-induced migration of oxygen vacancies and the subsequent instantaneous reestablishment of the local defect equilibria that lead to the resistance degradation. The resistance degradation behavior and the defect distributions under a long-term voltage stress are strongly influenced by the sample-annealing oxygen partial pressure, degrading electric field, and temperature. The present study contributes to the understanding of resistance degradation mechanism and provides guidance to improve the lifetime and reliability of wide band-gap semiconducting capacitors. [Display omitted]
ISSN:1359-6454
1873-2453
DOI:10.1016/j.actamat.2016.02.022