Single-Amino Acid Modifications Reveal Additional Controls on the Proton Pathway of [FeFe]-Hydrogenase

The proton pathway of [FeFe]-hydrogenase is essential for enzymatic H2 production and oxidation and is composed of four residues and a water molecule. A computational analysis of this pathway in the [FeFe]-hydrogenase from Clostridium pasteurianum revealed that the solvent-exposed residue of the pat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biochemistry (Easton) 2016-06, Vol.55 (22), p.3165-3173
Hauptverfasser: Cornish, Adam J, Ginovska, Bojana, Thelen, Adam, da Silva, Julio C. S, Soares, Thereza A, Raugei, Simone, Dupuis, Michel, Shaw, Wendy J, Hegg, Eric L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The proton pathway of [FeFe]-hydrogenase is essential for enzymatic H2 production and oxidation and is composed of four residues and a water molecule. A computational analysis of this pathway in the [FeFe]-hydrogenase from Clostridium pasteurianum revealed that the solvent-exposed residue of the pathway (Glu282) forms hydrogen bonds to two residues outside of the pathway (Arg286 and Ser320), implying that these residues could function in regulating proton transfer. In this study, we show that substituting Arg286 with leucine eliminates hydrogen bonding with Glu282 and results in an ∼3-fold enhancement of H2 production activity when methyl viologen is used as an electron donor, suggesting that Arg286 may help control the rate of proton delivery. In contrast, substitution of Ser320 with alanine reduces the rate ∼5-fold, implying that it either acts as a member of the pathway or influences Glu282 to permit proton transfer. Interestingly, quantum mechanics/molecular mechanics and molecular dynamics calculations indicate that Ser320 does not play a structural role or indirectly influence the barrier for proton movement at the entrance of the channel. Rather, it may act as an additional proton acceptor for the pathway or serve in a regulatory role. While further studies are needed to elucidate the role of Ser320, collectively these data provide insights into the complex proton transport process.
ISSN:0006-2960
1520-4995
DOI:10.1021/acs.biochem.5b01044