Entangling atomic spins with a Rydberg-dressed spin-flip blockade

Controlling the quantum entanglement between parts of a many-body system is key to unlocking the power of quantum technologies such as quantum computation, high-precision sensing, and the simulation of many-body physics. The spin degrees of freedom of ultracold neutral atoms in their ground electron...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2016-01, Vol.12 (1), p.71-74
Hauptverfasser: Jau, Y.-Y., Hankin, A. M., Keating, T., Deutsch, I. H., Biedermann, G. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Controlling the quantum entanglement between parts of a many-body system is key to unlocking the power of quantum technologies such as quantum computation, high-precision sensing, and the simulation of many-body physics. The spin degrees of freedom of ultracold neutral atoms in their ground electronic state provide a natural platform for such applications thanks to their long coherence times and the ability to control them with magneto-optical fields. However, the creation of strong coherent coupling between spins has been challenging. Here we demonstrate a strong and tunable Rydberg-dressed interaction between spins of individually trapped caesium atoms with energy shifts of order 1 MHz in units of Planck’s constant. This interaction leads to a ground-state spin-flip blockade, whereby simultaneous hyperfine spin flips of two atoms are inhibited owing to their mutual interaction. We employ this spin-flip blockade to rapidly produce single-step Bell-state entanglement between two atoms with a fidelity ≥81(2)%. Tunable interactions in quantum many-body systems have practical applications in quantum technologies. The effective spin-dependent long-range interaction known as Rydberg dressing is now exploited to entangle a pair of ultracold neutral atoms.
ISSN:1745-2473
1745-2481
DOI:10.1038/nphys3487