Improving olefin tolerance and production in E. coli using native and evolved AcrB

ABSTRACT Microorganisms can be engineered for the production of chemicals utilized in the polymer industry. However many such target compounds inhibit microbial growth and might correspondingly limit production levels. Here, we focus on compounds that are precursors to bioplastics, specifically styr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2015-01, Vol.112 (5)
Hauptverfasser: Mingardon, Florence, Clement, Camille, Hirano, Kathleen, Nhan, Melissa, Luning, Eric G., Chanal, Angelique, Mukhopadhyay, Aindrila
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Microorganisms can be engineered for the production of chemicals utilized in the polymer industry. However many such target compounds inhibit microbial growth and might correspondingly limit production levels. Here, we focus on compounds that are precursors to bioplastics, specifically styrene and representative alpha‐olefins; 1‐hexene, 1‐octene, and 1‐nonene. We evaluated the role of the Escherichia coli efflux pump, AcrAB‐TolC, in enhancing tolerance towards these olefin compounds. AcrAB‐TolC is involved in the tolerance towards all four compounds in E. coli . Both styrene and 1‐hexene are highly toxic to E. coli . Styrene is a model plastics precursor with an established route for production in E. coli (McKenna and Nielsen, 2011). Though our data indicates that AcrAB‐TolC is important for its optimal production, we observed a strong negative selection against the production of styrene in E. coli . Thus we used 1‐hexene as a model compound to implement a directed evolution strategy to further improve the tolerance phenotype towards this alpha‐olefin. We focused on optimization of AcrB, the inner membrane domain known to be responsible for substrate binding, and found several mutations (A279T, Q584R, F617L, L822P, F927S, and F1033Y) that resulted in improved tolerance. Several of these mutations could also be combined in a synergistic manner. Our study shows efflux pumps to be an important mechanism in host engineering for olefins, and one that can be further improved using strategies such as directed evolution, to increase tolerance and potentially production. Biotechnol. Bioeng. 2015;112: 879–888. © 2015 Wiley Periodicals, Inc.
ISSN:0006-3592
1097-0290