Molybdenum Polysulfide Chalcogels as High-Capacity, Anion-Redox-Driven Electrode Materials for Li-Ion Batteries
Sulfur cathodes in conversion reaction batteries offer high gravimetric capacity but suffer from parasitic polysulfide shuttling. We demonstrate here that transition metal chalcogels of approximate formula MoS3.4 achieve a high gravimetric capacity close to 600 mAh g–1 (close to 1000 mAh g–1 on a su...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2016-11, Vol.28 (22), p.8357-8365 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sulfur cathodes in conversion reaction batteries offer high gravimetric capacity but suffer from parasitic polysulfide shuttling. We demonstrate here that transition metal chalcogels of approximate formula MoS3.4 achieve a high gravimetric capacity close to 600 mAh g–1 (close to 1000 mAh g–1 on a sulfur basis) as electrode materials for lithium-ion batteries. Transition metal chalcogels are amorphous and comprise polysulfide chains connected by inorganic linkers. The linkers appear to act as a “glue” in the electrode to prevent polysulfide shuttling. The Mo chalcogels function as electrodes in carbonate- and ether-based electrolytes, which further provides evidence of polysulfide solubility not being a limiting issue. We employ X-ray spectroscopy and operando pair distribution function techniques to elucidate the structural evolution of the electrode. Raman and X-ray photoelectron spectroscopy track the chemical moieties that arise during the anion-redox-driven processes. We find the redox state of Mo remains unchanged across the electrochemical cycling and, correspondingly, the redox is anion-driven. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/acs.chemmater.6b03656 |