Direct Time-Domain View of Auger Recombination in a Semiconductor
The radiationless recombination of electron-hole pairs in semiconductors is detrimental to optoelectronic technologies. A prominent mechanism is Auger recombination, in which nonradiative recombination occurs efficiently by transferring the released energy-momentum to a third charge carrier. Here we...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2017-02, Vol.118 (8), p.087402-087402, Article 087402 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The radiationless recombination of electron-hole pairs in semiconductors is detrimental to optoelectronic technologies. A prominent mechanism is Auger recombination, in which nonradiative recombination occurs efficiently by transferring the released energy-momentum to a third charge carrier. Here we use femtosecond photoemission to directly detect Auger electrons as they scatter into energy and momentum spaces from Auger recombination in a model semiconductor, GaSb. The Auger rate is modulated by a coherent phonon mode at 2 THz, confirming phonon participation in momentum conservation. The commonly assumed Auger rate constant is found not to be a constant, but rather decreases by 4 orders of magnitude as hot electrons cool down by ∼90 meV. These findings provide quantitative guidance in understanding Auger recombination and in designing materials for efficient optoelectronics. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.118.087402 |