Improving the radiation hardness of graphene field effect transistors

Ionizing radiation poses a significant challenge to the operation and reliability of conventional silicon-based devices. Here, we report the effects of gamma radiation on graphene field-effect transistors (GFETs), along with a method to mitigate those effects by developing a radiation-hardened versi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2016-10, Vol.109 (15)
Hauptverfasser: Alexandrou, Konstantinos, Masurkar, Amrita, Edrees, Hassan, Wishart, James F., Hao, Yufeng, Petrone, Nicholas, Hone, James, Kymissis, Ioannis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ionizing radiation poses a significant challenge to the operation and reliability of conventional silicon-based devices. Here, we report the effects of gamma radiation on graphene field-effect transistors (GFETs), along with a method to mitigate those effects by developing a radiation-hardened version of our back-gated GFETs. We demonstrate that activated atmospheric oxygen from the gamma ray interaction with air damages the semiconductor device, and damage to the substrate contributes additional threshold voltage instability. Our radiation-hardened devices, which have protection against these two effects, exhibit minimal performance degradation, improved stability, and significantly reduced hysteresis after prolonged gamma radiation exposure. We believe this work provides an insight into graphene's interactions with ionizing radiation that could enable future graphene-based electronic devices to be used for space, military, and other radiation-sensitive applications.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4963782