Stress engineering of high-quality single crystal diamond by heteroepitaxial lateral overgrowth

A method for lateral overgrowth of low-stress single crystal diamond by chemical vapor deposition (CVD) is described. The process is initiated by deposition of a thin (550 nm) (001) diamond layer on Ir-buffered a-plane sapphire. The diamond is partially masked by periodic thermally evaporated Au str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2016-02, Vol.108 (5), p.52101
Hauptverfasser: Tang, Y.-H., Golding, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method for lateral overgrowth of low-stress single crystal diamond by chemical vapor deposition (CVD) is described. The process is initiated by deposition of a thin (550 nm) (001) diamond layer on Ir-buffered a-plane sapphire. The diamond is partially masked by periodic thermally evaporated Au stripes using photolithography. Lateral overgrowth of the Au occurs with extremely effective filtering of threading dislocations. Thermal stress resulting from mismatch of the low thermal expansion diamond and the sapphire substrate is largely accommodated by the ductile Au layer. The stress state of the diamond is investigated by Raman spectroscopy for two thicknesses: at 10 μm where the film has just overgrown the Au mask and at 180 μm where the film thickness greatly exceeds the scale of the masking. For the 10-μm film, the Raman linewidth shows spatial oscillations with the period of the Au stripes with a factor of 2 to 3 reduction relative to the unmasked region. In a 180-μm thick diamond film, the overall surface stress was extremely low, 0.00 ± 0.16 GPa, obtained from the Raman shift averaged over the 7.5 mm diameter of the crystal at its surface. We conclude that the metal mask protects the overgrown diamond layer from substrate-induced thermal stress and cracking. It is also responsible for low internal stress by reducing dislocation density by several orders of magnitude.
ISSN:0003-6951
1077-3118
DOI:10.1063/1.4941291