Two-photon absorption in conjugated energetic molecule

Time-dependent density functional theory (TD-DFT) is used to investigate the relationship between molecular structure and one- and two-photon absorption (OPA and TPA, respectively) properties in novel and recently synthesized conjugated energetic molecules (CEMs). The molecular structure of CEMs can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2016-06, Vol.120 (26)
Hauptverfasser: Bjorgaard, Josiah August, Sifain, Andrew, Nelson, Tammie Renee, Myers, Thomas Winfield, Veauthier, Jacqueline Marie, Chavez, David E., Scharff, Robert Jason, Tretiak, Sergei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Time-dependent density functional theory (TD-DFT) is used to investigate the relationship between molecular structure and one- and two-photon absorption (OPA and TPA, respectively) properties in novel and recently synthesized conjugated energetic molecules (CEMs). The molecular structure of CEMs can be strategically altered to influence the heat of formation and oxygen balance, two factors that can contribute to the sensitivity and strength of an explosive material. OPA and TPA are sensitive to changes in molecular structure as well, influencing optical range of excitation. We find calculated vertical excitation energies in good agreement with experiment for most molecules. Peak TPA intensities are significant and on the order of 102 GM. Natural transition orbitals for essential electronic states defining TPA peaks of relatively large intensity to examine the character of relevant transitions. Minor modification of molecular substituents, such as additional oxygen and other functional groups, produces significant changes in electronic structure, OPA, TPA, and improves the oxygen balance. Results show that select molecules are apt to nonlinear absorption, opening the possibility for controlled, direct optical initiation of CEMs through photochemical pathways.
ISSN:1089-5639
1520-5215