Structural Phase Transition and Material Properties of Few-Layer Monochalcogenides

GeSe and SnSe monochalcogenide monolayers and bilayers undergo a two-dimensional phase transition from a rectangular unit cell to a square unit cell at a critical temperature T_{c} well below the melting point. Its consequences on material properties are studied within the framework of Car-Parrinell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2016-12, Vol.117 (24), p.246802-246802, Article 246802
Hauptverfasser: Mehboudi, Mehrshad, Fregoso, Benjamin M, Yang, Yurong, Zhu, Wenjuan, van der Zande, Arend, Ferrer, Jaime, Bellaiche, L, Kumar, Pradeep, Barraza-Lopez, Salvador
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:GeSe and SnSe monochalcogenide monolayers and bilayers undergo a two-dimensional phase transition from a rectangular unit cell to a square unit cell at a critical temperature T_{c} well below the melting point. Its consequences on material properties are studied within the framework of Car-Parrinello molecular dynamics and density-functional theory. No in-gap states develop as the structural transition takes place, so that these phase-change materials remain semiconducting below and above T_{c}. As the in-plane lattice transforms from a rectangle into a square at T_{c}, the electronic, spin, optical, and piezoelectric properties dramatically depart from earlier predictions. Indeed, the Y and X points in the Brillouin zone become effectively equivalent at T_{c}, leading to a symmetric electronic structure. The spin polarization at the conduction valley edge vanishes, and the hole conductivity must display an anomalous thermal increase at T_{c}. The linear optical absorption band edge must change its polarization as well, making this structural and electronic evolution verifiable by optical means. Much excitement is drawn by theoretical predictions of giant piezoelectricity and ferroelectricity in these materials, and we estimate a pyroelectric response of about 3×10^{-12}  C/K m here. These results uncover the fundamental role of temperature as a control knob for the physical properties of few-layer group-IV monochalcogenides.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.117.246802