Superconductivity in FeSe Thin Films Driven by the Interplay between Nematic Fluctuations and Spin-Orbit Coupling

The origin of the high-temperature superconducting state observed in FeSe thin films, whose phase diagram displays no sign of magnetic order, remains a hotly debated topic. Here we investigate whether fluctuations arising due to the proximity to a nematic phase, which is observed in the phase diagra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2016-11, Vol.117 (21), p.217003-217003, Article 217003
Hauptverfasser: Kang, Jian, Fernandes, Rafael M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The origin of the high-temperature superconducting state observed in FeSe thin films, whose phase diagram displays no sign of magnetic order, remains a hotly debated topic. Here we investigate whether fluctuations arising due to the proximity to a nematic phase, which is observed in the phase diagram of this material, can promote superconductivity. We find that nematic fluctuations alone promote a highly degenerate pairing state, in which both s-wave and d-wave symmetries are equally favored, and T_{c} is consequently suppressed. However, the presence of a sizable spin-orbit coupling or inversion symmetry breaking at the film interface lifts this harmful degeneracy and selects the s-wave state, in agreement with recent experimental proposals. The resulting gap function displays a weak anisotropy, which agrees with experiments in monolayer FeSe and intercalated Li_{1-x}(OH)_{x}FeSe.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.117.217003