Superelasticity and Tunable Thermal Expansion across a Wide Temperature Range
Materials that undergo a reversible change of crystal structure through martensitic transformation (MT) possess unusual functionalities including shape memory, superelasticity, and low/negative thermal ex- pansion. These properties have many advanced applications, such as actuators, sensors, and ene...
Gespeichert in:
Veröffentlicht in: | Journal of materials science & technology 2016-08, Vol.32 (8), p.705-709 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Materials that undergo a reversible change of crystal structure through martensitic transformation (MT) possess unusual functionalities including shape memory, superelasticity, and low/negative thermal ex- pansion. These properties have many advanced applications, such as actuators, sensors, and energy conversion, but are limited typically in a narrow temperature range of tens of Kelvin. Here we report that, by creating a nano-scale concentration modulation via phase separation, the MT can be rendered continuous by an in-situ elastic confinement mechanism. Through a model titanium alloy, we demon- strate that the elastically confined continuous MT has unprecedented properties, such as superelasticity from below 4.2 K to 500 K, fully tunable and stable thermal expansion, from positive, through zero, to negative, from below 4.2 K to 573 K, and high strength-to-modulus ratio across a wide temperature range. The elastic tuning on the MT, together with a significant extension of the crystal stability limit, provides new opportunities to explore advanced materials. |
---|---|
ISSN: | 1005-0302 1941-1162 |
DOI: | 10.1016/j.jmst.2016.06.017 |