Gas Adsorption Capacity of Wood Pellets
In this study, temperature-programmed desorption (TPD) analysis was used to measure and analyze the adsorption of off-gases and oxygen by wood pellets during storage. Such information on how these gases interact with the material helps in the understanding of the purging/stripping behavior of off-ga...
Gespeichert in:
Veröffentlicht in: | Energy & fuels 2016-04, Vol.30 (4), p.2975-2981 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, temperature-programmed desorption (TPD) analysis was used to measure and analyze the adsorption of off-gases and oxygen by wood pellets during storage. Such information on how these gases interact with the material helps in the understanding of the purging/stripping behavior of off-gases to develop effective ventilation strategies for wood pellets. Steam-exploded pellets showed the lowest carbon dioxide (CO2) uptake compared to the regular and torrefied pellets. The high CO2 adsorption capacity of the torrefied pellets could be attributed to their porous structure and therefore greater available surface area. Quantifying the uptake of carbon monoxide by pellets was challenging due to chemical adsorption, which formed a strong bond between the material and carbon monoxide. The estimated energy of desorption for CO (97.8 kJ/mol) was very high relative to that for CO2 (7.24 kJ/mol), demonstrating the mechanism of chemical adsorption and physical adsorption for CO and CO2, respectively. As for oxygen, the strong bonds that formed between the material and oxygen verified the existence of chemical adsorption and formation of an intermediate material. |
---|---|
ISSN: | 0887-0624 1520-5029 |
DOI: | 10.1021/acs.energyfuels.5b02736 |