Computer-Aided Molecular Design of Bis-phosphine Oxide Lanthanide Extractants

Computer-aided molecular design and high-throughput screening of viable host architectures can significantly reduce the efforts in the design of novel ligands for efficient extraction of rare earth elements. This paper presents a computational approach to the deliberate design of bis-phosphine oxide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2016-06, Vol.55 (12), p.5787-5803
Hauptverfasser: McCann, Billy W., Silva, Nuwan De, Windus, Theresa L., Gordon, Mark S., Moyer, Bruce A., Bryantsev, Vyacheslav S., Hay, Benjamin P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Computer-aided molecular design and high-throughput screening of viable host architectures can significantly reduce the efforts in the design of novel ligands for efficient extraction of rare earth elements. This paper presents a computational approach to the deliberate design of bis-phosphine oxide host architectures that are structurally organized for complexation of trivalent lanthanides. Molecule building software, HostDesigner, was interfaced with molecular mechanics software, PCModel, providing a tool for generating and screening millions of potential R2(O)­P–link–P­(O)­R2 ligand geometries. The molecular mechanics ranking of ligand structures is consistent with both the solution-phase free energies of complexation obtained with density functional theory and the performance of known bis-phosphine oxide extractants. For the case where the link is −CH2–, evaluation of the ligand geometry provides the first characterization of a steric origin for the “anomalous aryl strengthening” effect. The design approach has identified a number of novel bis-phosphine oxide ligands that are better organized for lanthanide complexation than previously studied examples.
ISSN:0020-1669
1520-510X
DOI:10.1021/acs.inorgchem.5b02995