Iron mineralogy and uranium-binding environment in the rhizosphere of a wetland soil

Wetlands mitigate the migration of groundwater contaminants through the creation of biogeochemical gradients that enhance multiple contaminant-binding processes. Our hypothesis was that wetland plants not only contribute organic carbon, produce strong redox gradients, and elevate microbial populatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2016-11, Vol.569-570
Hauptverfasser: Kaplan, Daniel I., Kukkadapu, Ravi, Seaman, John C., Arey, Bruce W., Dohnalkova, Alice C., Buettner, Shea, Li, Dien, Varga, Tamas, Scheckel, Kirk G., Jaffé, Peter R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wetlands mitigate the migration of groundwater contaminants through the creation of biogeochemical gradients that enhance multiple contaminant-binding processes. Our hypothesis was that wetland plants not only contribute organic carbon, produce strong redox gradients, and elevate microbial populations to soils, but together these conditions also promote the formation of Fe (oxyhydr)oxides within the plant rhizosphere that may also contribute to contaminant immobilization. Mineralogy and U binding environments of the rhizosphere (plant-impacted soil zone) were evaluated in samples collected from contaminated and non-contaminated areas of a wetland on the Savannah River Site in South Carolina. Based on Mossbauer spectroscopy, rhizosphere soil collected from the field study site was greatly enriched with poorly crystalline nanoparticulate Fe-oxide/ferrihydrite-like materials and nano-goethite (
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2016.06.120