A fully-neoclassical finite-orbit-width version of the CQL3D Fokker-Planck code
The time-dependent bounce-averaged CQL3D flux-conservative finite-difference Fokker-Planck equation (FPE) solver has been upgraded to include finite-orbit-width (FOW) capabilities which are necessary for an accurate description of neoclassical transport, losses to the walls, and transfer of particle...
Gespeichert in:
Veröffentlicht in: | Plasma physics and controlled fusion 2016-09, Vol.58 (11), p.115001 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The time-dependent bounce-averaged CQL3D flux-conservative finite-difference Fokker-Planck equation (FPE) solver has been upgraded to include finite-orbit-width (FOW) capabilities which are necessary for an accurate description of neoclassical transport, losses to the walls, and transfer of particles, momentum, and heat to the scrape-off layer. The FOW modifications are implemented in the formulation of the neutral beam source, collision operator, RF quasilinear diffusion operator, and in synthetic particle diagnostics. The collisional neoclassical radial transport appears naturally in the FOW version due to the orbit-averaging of local collision coefficients coupled with transformation coefficients from local (R, Z) coordinates along each guiding-center orbit to the corresponding midplane computational coordinates, where the FPE is solved. In a similar way, the local quasilinear RF diffusion terms give rise to additional radial transport of orbits. We note that the neoclassical results are obtained for 'full' orbits, not dependent on a common small orbit-width approximation. Results of validation tests for the FOW version are also presented. |
---|---|
ISSN: | 0741-3335 1361-6587 |
DOI: | 10.1088/0741-3335/58/11/115001 |