Synthesis of α-MoC1−x Nanoparticles with a Surface-Modified SBA-15 Hard Template: Determination of Structure-Function Relationships in Acetic Acid Deoxygenation

Surface modification of mesoporous SBA‐15 silica generated a hydrophobic environment for a molybdenum diamine (Mo‐diamine) precursor solution, enabling direct growth of isolated 1.9±0.4 nm α‐MoC1−x nanoparticles (NPs) inside the pores of the support. The resulting NP catalysts are bifunctional, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie (International ed.) 2016-07, Vol.55 (31), p.9026-9029
Hauptverfasser: Baddour, Frederick G., Nash, Connor P., Schaidle, Joshua A., Ruddy, Daniel A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface modification of mesoporous SBA‐15 silica generated a hydrophobic environment for a molybdenum diamine (Mo‐diamine) precursor solution, enabling direct growth of isolated 1.9±0.4 nm α‐MoC1−x nanoparticles (NPs) inside the pores of the support. The resulting NP catalysts are bifunctional, and compared to bulk α‐MoC1−x and β‐Mo2C, the NPs exhibit a greater acid‐site:H‐site ratio and a fraction of stronger acid sites. The greater acid‐site:H‐site ratio results in higher decarbonylation (DCO) selectivity during acetic acid hydrodeoxygenation (HDO) reactions, and the stronger acid sites lead to higher activity and ketonization (KET) selectivity at high temperatures. The hard‐templating synthetic method could be a versatile route toward carbide NPs of varying size, composition, and phase, on a range of mesoporous oxide supports. A molybdenum‐carbide and SBA‐15 silica nanocomposite catalyst: A synthetic route was developed for direct growth of isolated α‐MoC1−x nanoparticles in the pores of surface‐modified SBA‐15 silica. Compared to bulk carbides, the bifunctional nanocatalysts exhibit a greater acid‐site:H‐site ratio and a fraction of stronger acid sites, which influence catalytic selectivity during acetic acid hydrodeoxygenation.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201602878