Development of the conceptual models for chemical conditions and hydrology used in the 1996 performance assessment for the Waste Isolation Pilot Plant
The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) facility for the permanent disposal of defense-related transuranic (TRU) waste. US Environmental Protection Agency (EPA) regulations specify that the DOE must demonstrate on a sound basis that the WIPP disposal system will eff...
Gespeichert in:
Veröffentlicht in: | Reliability engineering & system safety 2000, Vol.69 (1), p.59-86 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) facility for the permanent disposal of defense-related transuranic (TRU) waste. US Environmental Protection Agency (EPA) regulations specify that the DOE must demonstrate on a sound basis that the WIPP disposal system will effectively contain long-lived alpha-emitting radionuclides within its boundaries for 10,000
years following closure. In 1996, the DOE submitted the
40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant (CCA) to the EPA. The CCA proposed that the WIPP site complies with EPA's regulatory requirements. Contained within the CCA are descriptions of the scientific research conducted to characterize the properties of the WIPP site and the probabilistic performance assessment (PA) conducted to predict the containment properties of the WIPP disposal system. In May 1998, the EPA certified that the TRU waste disposal at the WIPP complies with its regulations. Waste disposal operations at WIPP commenced on 28 March 1999.
The 1996 WIPP PA model of the disposal system included conceptual and mathematical representations of key hydrologic and geochemical processes. These key processes were identified over a 22-year period involving data collection, data interpretation, computer models, and sensitivity studies to evaluate the importance of uncertainty and of processes that were difficult to evaluate by other means. Key developments in the area of geochemistry were the evaluation of gas generation mechanisms in the repository; development of a model of chemical conditions in the repository and actinide concentrations in brine; selecting MgO backfill and demonstrating its effects experimentally; and, determining the chemical retardation capability of the Culebra. Key developments in the area of hydrology were evaluating the potential for groundwater to dissolve the Salado Formation (the repository host formation); development of a regional model for hydrologic conditions; development of a stochastic, probabilistic representation of hydraulic properties in the Culebra Member of the Rustler Formation; characterization of physical transport in the Culebra; and, the evaluation of brine and gas flow in the Salado. Additional confidence in the conceptual models used in the 1996 WIPP PA was gained through independent peer review in many stages of their development. |
---|---|
ISSN: | 0951-8320 1879-0836 |
DOI: | 10.1016/S0951-8320(00)00025-9 |