Mechanical response and deformation mechanisms of ferritic oxide dispersion strengthened steel structures produced by selective laser melting

Oxide dispersion strengthened (ODS) ferritic steels typically contain a fine dispersion of nanoscopic Y(Al, Ti) oxides, leading to an improvement in mechanical and physical properties. For a rapid prototyping technique, selective laser melting (SLM), was successfully applied to consolidate as-mechan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2015-01, Vol.87 (C)
Hauptverfasser: Boegelein, Thomas, Dryepondt, Sebastien N., Pandey, Amit, Dawson, Karl, Tatlock, Gordon J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Oxide dispersion strengthened (ODS) ferritic steels typically contain a fine dispersion of nanoscopic Y(Al, Ti) oxides, leading to an improvement in mechanical and physical properties. For a rapid prototyping technique, selective laser melting (SLM), was successfully applied to consolidate as-mechanically alloyed ODS-PM2000 (Fe 19Cr 5.5Al 0.5Ti 0.5Y2O3; all wt.%) powder to fabricate solid and thin-walled builds of different thickness. Our work is intended to act as a first study to investigate the tensile response of such configurations at room temperature, using miniaturized test specimens along and perpendicular to the growth direction. The 0.2% offset yield strength of as-grown wall builds was inferior to conventional PM2000 alloy (recrystallized), but could be significantly increased by conducting post-build heat treatments. Young s modulus and yield strength showed anisotropy and were enhanced when testing perpendicular to the build growth direction. Electron backscatter diffraction revealed a strong [001] fibre texture along the growth direction, which explains the anisotropic behaviour. In addition, studies on the morphology of the individual fracture surfaces, the grain structure of the cross-section near this region and the size distribution of ODS particles in such builds were conducted. A fine dispersion of precipitates was retained in all SLM builds, and findings suggest that a certain amount of Y is probably still in atomic solution in the as-grown condition and forms new small nanoscopic dispersoids during annealing, which lead to enhanced strengthening.
ISSN:1359-6454
1873-2453
DOI:10.1016/j.actamat.2014.12.047