An atomic orbital-based formulation of analytical gradients and nonadiabatic coupling vector elements for the state-averaged complete active space self-consistent field method on graphical processing units

We recently presented an algorithm for state-averaged complete active space self-consistent field (SA-CASSCF) orbital optimization that capitalizes on sparsity in the atomic orbital basis set to reduce the scaling of computational effort with respect to molecular size. Here, we extend those algorith...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2015-10, Vol.143 (15), p.154107-154107
Hauptverfasser: Snyder, Jr, James W, Hohenstein, Edward G, Luehr, Nathan, Martínez, Todd J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We recently presented an algorithm for state-averaged complete active space self-consistent field (SA-CASSCF) orbital optimization that capitalizes on sparsity in the atomic orbital basis set to reduce the scaling of computational effort with respect to molecular size. Here, we extend those algorithms to calculate the analytic gradient and nonadiabatic coupling vectors for SA-CASSCF. Combining the low computational scaling with acceleration from graphical processing units allows us to perform SA-CASSCF geometry optimizations for molecules with more than 1000 atoms. The new approach will make minimal energy conical intersection searches and nonadiabatic dynamics routine for molecular systems with O(10(2)) atoms.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.4932613