Influence of the hole-transport layer on the initial behavior and lifetime of inverted organic photovoltaics

The inverted organic photovoltaic (OPV) device architecture represents an important advancement due to the relative environmental stability of the electron transport layer (ETL) and hole-collecting contact. We investigated the initial and long-term behavior of inverted devices to identify changes ta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2011-05, Vol.95 (5), p.1382-1388
Hauptverfasser: Lloyd, Matthew T., Peters, Craig H., Garcia, Andres, Kauvar, Isaac V., Berry, Joseph J., Reese, Matthew O., McGehee, Michael D., Ginley, David S., Olson, Dana C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The inverted organic photovoltaic (OPV) device architecture represents an important advancement due to the relative environmental stability of the electron transport layer (ETL) and hole-collecting contact. We investigated the initial and long-term behavior of inverted devices to identify changes taking place at the Ag hole-collecting contact. We show that efficient hole collection can be obtained after modifying the Ag contact by thermal annealing, long-term exposure to ambient atmosphere, or employing a high work function organic hole-transport layer (HTL). We find that whether or not the device employs an organic HTL, degradation of the photocurrent initially follows a simple exponential decay. After prolonged illumination (>500 h), devices with an organic HTL fail catastrophically due to a precipitous drop in photocurrent. Based on evidence for pinhole-induced degradation observed in photocurrent maps, we propose a nucleation and island growth mechanism and a model for the photocurrent behavior employing a modified Johnson–Mehl–Avrami–Kolmogorov (JMAK) equation. Devices that do not contain an HTL appear to degrade by a mechanism other than pinhole ingress resulting in a more uniform degradation of the photocurrent across the active area. [Display omitted] ► We monitor initial and long-term behavior of illuminated inverted P3HT:PCBM devices. ► Initial improvement arises due to evolution of the active layer-Ag interface. ► Two modes of failure are found to depend on modification of the hole-collecting contact. ► We propose a nucleation and island growth mechanism to model catastrophic current loss.
ISSN:0927-0248
1879-3398
DOI:10.1016/j.solmat.2010.12.036