Multiparameter spatio-thermochemical probing of flame–wall interactions advanced with coherent Raman imaging

Ultrabroadband coherent anti-Stokes Ra man spectroscopy (CARS) has been developed for one -dimensional imaging of temperature and major species distributions simultaneously in the near-wall region of a methane/air flame supported on a side-wall-quenching (SWQ) burner. Automatic temporal and spatial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Combustion Institute 2016-08
Hauptverfasser: Bohlin, Gustav Alexis, Jainski, Christopher, Patterson, Brian D., Dreizler, Andreas, Kliewer, Christopher Jesse
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultrabroadband coherent anti-Stokes Ra man spectroscopy (CARS) has been developed for one -dimensional imaging of temperature and major species distributions simultaneously in the near-wall region of a methane/air flame supported on a side-wall-quenching (SWQ) burner. Automatic temporal and spatial overlap of the ~7 femtosecond pump and Stokes pulses is achieved utilizing a two-beam CARS phase-matching scheme, and the crossed ~75 picosecond probe beam provide s excellent spatial sectioning of the probed location. Concurrent detection of N2, O2, H2, CO, CO2, and CH4 is demonstrated while high-fidelity flame thermometry is assessed from the N2 pure rotational S-branch in a one-dimensional -CARS imaging configuration. A methane/air premixed flame at lean, stoichiometric, and rich conditions ( Φ = 0.83, 1.0 , and 1.2) and Reynolds number = 5,000 is probed as it quenches against a cooled steel side- wall parallel to the flow providing a persistent flame-wall interaction. Here, an imaging resolution of better than 40 μm is achieved across the field -of-view, thus allowing thermochemical states (temperature and major species) of the thermal boundary layer to be resolved to within ~30 μm of the interface.
ISSN:1540-7489