Soot formation in non-premixed counterflow flames of butane and butanol isomers

Soot formation processes for butane and butanol isomers have been experimentally investigated and compared in a counterflow non-premixed flame configuration at atmospheric pressure. Non-intrusive laser-based diagnostic techniques, including Laser Induced Incandescence and Light Extinction, have been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combustion and flame 2016-02, Vol.164 (C), p.167-182
Hauptverfasser: Singh, Pradeep, Hui, Xin, Sung, Chih-Jen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soot formation processes for butane and butanol isomers have been experimentally investigated and compared in a counterflow non-premixed flame configuration at atmospheric pressure. Non-intrusive laser-based diagnostic techniques, including Laser Induced Incandescence and Light Extinction, have been adopted for soot volume fraction measurements. Experimental results of these C4 fuels have been compared to illustrate the effects of hydroxyl (–OH) group and the isomeric structures on soot formation process. Under the investigated conditions, butane isomers were observed to form more soot than butanol isomers, thereby showing the effect of the hydroxyl group. The effects of isomeric structural differences on sooting propensity were also observed within the butane and butanol isomers. In addition, while soot volume fraction was seen to increase with increasing fuel mole fraction, the ranking of sooting propensity for these C4 fuels remained unchanged. Effects of varying strain rate and oxygen mole fraction on soot formation were studied herein as well. For each isomeric class, two chemical kinetic models available in the literature were used to simulate and compare the spatially-resolved profiles of the soot precursors. The amount of soot precursors predicted by the models was different and the initial fuel breaking pathways were also found to differ significantly. Furthermore, no direct correlation between the computed mole fractions of soot precursors and the measured amount of soot formed in the present experimental conditions was observed.
ISSN:0010-2180
1556-2921
DOI:10.1016/j.combustflame.2015.11.015