Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid

The splitting of dinitrogen (N₂) and reduction to ammonia (NH₃) is a kinetically complex and energetically challenging multistep reaction. In the Haber-Bosch process, N₂ reduction is accomplished at high temperature and pressure, whereas N₂ fixation by the enzyme nitrogenase occurs under ambient con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2016-04, Vol.352 (6284), p.448-450
Hauptverfasser: Brown, Katherine A., Harris, Derek F., Wilker, Molly B., Rasmussen, Andrew, Khadka, Nimesh, Hamby, Hayden, Keable, Stephen, Dukovic, Gordana, Peters, John W., Seefeldt, Lance C., King, Paul W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The splitting of dinitrogen (N₂) and reduction to ammonia (NH₃) is a kinetically complex and energetically challenging multistep reaction. In the Haber-Bosch process, N₂ reduction is accomplished at high temperature and pressure, whereas N₂ fixation by the enzyme nitrogenase occurs under ambient conditions using chemical energy from adenosine 5'-triphosphate (ATP) hydrolysis. We show that cadmium sulfide (CdS) nanocrystals can be used to photosensitize the nitrogenase molybdenum-iron (MoFe) protein, where light harvesting replaces ATP hydrolysis to drive the enzymatic reduction of N₂ into NH₃. The turnover rate was 75 per minute, 63% of the ATP-coupled reaction rate for the nitrogenase complex under optimal conditions. Inhibitors of nitrogenase (i.e., acetylene, carbon monoxide, and dihydrogen) suppressed N₂ reduction. The CdS:MoFe protein biohybrids provide a photochemical model for achieving light-driven N₂ reduction to NH₃.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.aaf2091