Metal–Organic Frameworks Stabilize Solution-Inaccessible Cobalt Catalysts for Highly Efficient Broad-Scope Organic Transformations
New and active earth-abundant metal catalysts are critically needed to replace precious metal-based catalysts for sustainable production of commodity and fine chemicals. We report here the design of highly robust, active, and reusable cobalt-bipyridine- and cobalt-phenanthroline-based metal–organic...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2016-03, Vol.138 (9), p.3241-3249 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | New and active earth-abundant metal catalysts are critically needed to replace precious metal-based catalysts for sustainable production of commodity and fine chemicals. We report here the design of highly robust, active, and reusable cobalt-bipyridine- and cobalt-phenanthroline-based metal–organic framework (MOF) catalysts for alkene hydrogenation and hydroboration, aldehyde/ketone hydroboration, and arene C–H borylation. In alkene hydrogenation, the MOF catalysts tolerated a variety of functional groups and displayed unprecedentedly high turnover numbers of ∼2.5 × 106 and turnover frequencies of ∼1.1 × 105 h–1. Structural, computational, and spectroscopic studies show that site isolation of the highly reactive (bpy)Co(THF)2 species in the MOFs prevents intermolecular deactivation and stabilizes solution-inaccessible catalysts for broad-scope organic transformations. Computational, spectroscopic, and kinetic evidence further support a hitherto unknown (bpy•–)CoI(THF)2 ground state that coordinates to alkene and dihydrogen and then undergoing σ-complex-assisted metathesis to form (bpy)Co(alkyl)(H). Reductive elimination of alkane followed by alkene binding completes the catalytic cycle. MOFs thus provide a novel platform for discovering new base-metal molecular catalysts and exhibit enormous potential in sustainable chemical catalysis. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.6b00849 |