Strong scaling of general-purpose molecular dynamics simulations on GPUs

We describe a highly optimized implementation of MPI domain decomposition in a GPU-enabled, general-purpose molecular dynamics code, HOOMD-blue (Anderson and Glotzer, 2013). Our approach is inspired by a traditional CPU-based code, LAMMPS (Plimpton, 1995), but is implemented within a code that was d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer physics communications 2015-07, Vol.192 (C), p.97-107
Hauptverfasser: Glaser, Jens, Nguyen, Trung Dac, Anderson, Joshua A., Lui, Pak, Spiga, Filippo, Millan, Jaime A., Morse, David C., Glotzer, Sharon C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a highly optimized implementation of MPI domain decomposition in a GPU-enabled, general-purpose molecular dynamics code, HOOMD-blue (Anderson and Glotzer, 2013). Our approach is inspired by a traditional CPU-based code, LAMMPS (Plimpton, 1995), but is implemented within a code that was designed for execution on GPUs from the start (Anderson et al., 2008). The software supports short-ranged pair force and bond force fields and achieves optimal GPU performance using an autotuning algorithm. We are able to demonstrate equivalent or superior scaling on up to 3375 GPUs in Lennard-Jones and dissipative particle dynamics (DPD) simulations of up to 108 million particles. GPUDirect RDMA capabilities in recent GPU generations provide better performance in full double precision calculations. For a representative polymer physics application, HOOMD-blue 1.0 provides an effective GPU vs. CPU node speed-up of 12.5×.
ISSN:0010-4655
1879-2944
DOI:10.1016/j.cpc.2015.02.028