X‑ray Emission Spectroscopy of Mn Coordination Complexes Toward Interpreting the Electronic Structure of the Oxygen-Evolving Complex of Photosystem II

X-ray emission (XES) spectroscopy is an attractive technique for analysis of the electronic structure of molecules, materials, and metalloproteins. However, a better understanding of XES results is required. Using a combination of experiment and ground-state density functional theory analysis, we ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2016-02, Vol.120 (6), p.3326-3333
Hauptverfasser: Davis, Katherine M, Palenik, Mark C, Yan, Lifen, Smith, Paul F, Seidler, Gerald T, Dismukes, G. Charles, Pushkar, Yulia N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3333
container_issue 6
container_start_page 3326
container_title Journal of physical chemistry. C
container_volume 120
creator Davis, Katherine M
Palenik, Mark C
Yan, Lifen
Smith, Paul F
Seidler, Gerald T
Dismukes, G. Charles
Pushkar, Yulia N
description X-ray emission (XES) spectroscopy is an attractive technique for analysis of the electronic structure of molecules, materials, and metalloproteins. However, a better understanding of XES results is required. Using a combination of experiment and ground-state density functional theory analysis, we rationalize differences in the X-ray emission spectra of multinuclear Mn complexes. Model compounds, including dinuclear [Mn2O2L′4]­(ClO4)3 (L′= 2,2′-bipyridyl, [1]) and two examples from the Mn4O4L6 “cubane” family of model compounds (L = (p-R-C6H4)­PO2 −, R = OCH3 [2], CH3 [3] ), were compared with the Oxygen Evolving Complex of Photosystem II. Our analysis shows that changes in the structure of the Mn complexes, resulting in changes to the spin polarization, can introduce significant spectral shifts in compounds of the same formal redox state. The implications of changes in spin polarization for understanding photosynthetic water-splitting catalysis is discussed.
doi_str_mv 10.1021/acs.jpcc.5b10610
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1239425</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a52346035</sourcerecordid><originalsourceid>FETCH-LOGICAL-a415t-610f518e4f8172ef98f436eb7a24e59ea1ee7e6ed3e5ae9025e8e51832e9f97e3</originalsourceid><addsrcrecordid>eNp1kMtKw0AUhoMoWKt7l4NrU-eSaZKlhKiBSoVWcBem05M2JZkJM1Ntdr6CO5_PJzFpiztX58B_gf_zvGuCRwRTciekHW0aKUd8QfCY4BNvQGJG_TDg_PTvD8Jz78LaDcacYcIG3vfbz-eXES1K69LaUis0a0A6o63UTYt0gZ4VSrQ2y1IJ1-uJrpsKdmDRXH8Is0SZcmAaA65UK-TWgNJq36BKiWbObKXbGuibem26a1eg_PRdV--9_9jWyy9r7bRtrYMaZdmld1aIysLV8Q6914d0njz5k-ljltxPfBEQ7vxuacFJBEERkZBCEUdFwMawCAUNgMcgCEAIY1gy4AJiTDlE0AUYhbiIQ2BD7-bQq60rcytLB3IttVLdhpxQFgeUdyZ8MMkOjDVQ5I0pa2HanOC8x593-PMef37E30VuD5G9ordGdSv-t_8CmZiNmQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>X‑ray Emission Spectroscopy of Mn Coordination Complexes Toward Interpreting the Electronic Structure of the Oxygen-Evolving Complex of Photosystem II</title><source>ACS Publications</source><creator>Davis, Katherine M ; Palenik, Mark C ; Yan, Lifen ; Smith, Paul F ; Seidler, Gerald T ; Dismukes, G. Charles ; Pushkar, Yulia N</creator><creatorcontrib>Davis, Katherine M ; Palenik, Mark C ; Yan, Lifen ; Smith, Paul F ; Seidler, Gerald T ; Dismukes, G. Charles ; Pushkar, Yulia N ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>X-ray emission (XES) spectroscopy is an attractive technique for analysis of the electronic structure of molecules, materials, and metalloproteins. However, a better understanding of XES results is required. Using a combination of experiment and ground-state density functional theory analysis, we rationalize differences in the X-ray emission spectra of multinuclear Mn complexes. Model compounds, including dinuclear [Mn2O2L′4]­(ClO4)3 (L′= 2,2′-bipyridyl, [1]) and two examples from the Mn4O4L6 “cubane” family of model compounds (L = (p-R-C6H4)­PO2 −, R = OCH3 [2], CH3 [3] ), were compared with the Oxygen Evolving Complex of Photosystem II. Our analysis shows that changes in the structure of the Mn complexes, resulting in changes to the spin polarization, can introduce significant spectral shifts in compounds of the same formal redox state. The implications of changes in spin polarization for understanding photosynthetic water-splitting catalysis is discussed.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.5b10610</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Energy ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Ligands ; Oxidation state ; Quantum mechanics ; Transition metals</subject><ispartof>Journal of physical chemistry. C, 2016-02, Vol.120 (6), p.3326-3333</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a415t-610f518e4f8172ef98f436eb7a24e59ea1ee7e6ed3e5ae9025e8e51832e9f97e3</citedby><cites>FETCH-LOGICAL-a415t-610f518e4f8172ef98f436eb7a24e59ea1ee7e6ed3e5ae9025e8e51832e9f97e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5b10610$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.5b10610$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2764,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1239425$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Davis, Katherine M</creatorcontrib><creatorcontrib>Palenik, Mark C</creatorcontrib><creatorcontrib>Yan, Lifen</creatorcontrib><creatorcontrib>Smith, Paul F</creatorcontrib><creatorcontrib>Seidler, Gerald T</creatorcontrib><creatorcontrib>Dismukes, G. Charles</creatorcontrib><creatorcontrib>Pushkar, Yulia N</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>X‑ray Emission Spectroscopy of Mn Coordination Complexes Toward Interpreting the Electronic Structure of the Oxygen-Evolving Complex of Photosystem II</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>X-ray emission (XES) spectroscopy is an attractive technique for analysis of the electronic structure of molecules, materials, and metalloproteins. However, a better understanding of XES results is required. Using a combination of experiment and ground-state density functional theory analysis, we rationalize differences in the X-ray emission spectra of multinuclear Mn complexes. Model compounds, including dinuclear [Mn2O2L′4]­(ClO4)3 (L′= 2,2′-bipyridyl, [1]) and two examples from the Mn4O4L6 “cubane” family of model compounds (L = (p-R-C6H4)­PO2 −, R = OCH3 [2], CH3 [3] ), were compared with the Oxygen Evolving Complex of Photosystem II. Our analysis shows that changes in the structure of the Mn complexes, resulting in changes to the spin polarization, can introduce significant spectral shifts in compounds of the same formal redox state. The implications of changes in spin polarization for understanding photosynthetic water-splitting catalysis is discussed.</description><subject>Energy</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Ligands</subject><subject>Oxidation state</subject><subject>Quantum mechanics</subject><subject>Transition metals</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKw0AUhoMoWKt7l4NrU-eSaZKlhKiBSoVWcBem05M2JZkJM1Ntdr6CO5_PJzFpiztX58B_gf_zvGuCRwRTciekHW0aKUd8QfCY4BNvQGJG_TDg_PTvD8Jz78LaDcacYcIG3vfbz-eXES1K69LaUis0a0A6o63UTYt0gZ4VSrQ2y1IJ1-uJrpsKdmDRXH8Is0SZcmAaA65UK-TWgNJq36BKiWbObKXbGuibem26a1eg_PRdV--9_9jWyy9r7bRtrYMaZdmld1aIysLV8Q6914d0njz5k-ljltxPfBEQ7vxuacFJBEERkZBCEUdFwMawCAUNgMcgCEAIY1gy4AJiTDlE0AUYhbiIQ2BD7-bQq60rcytLB3IttVLdhpxQFgeUdyZ8MMkOjDVQ5I0pa2HanOC8x593-PMef37E30VuD5G9ordGdSv-t_8CmZiNmQ</recordid><startdate>20160218</startdate><enddate>20160218</enddate><creator>Davis, Katherine M</creator><creator>Palenik, Mark C</creator><creator>Yan, Lifen</creator><creator>Smith, Paul F</creator><creator>Seidler, Gerald T</creator><creator>Dismukes, G. Charles</creator><creator>Pushkar, Yulia N</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160218</creationdate><title>X‑ray Emission Spectroscopy of Mn Coordination Complexes Toward Interpreting the Electronic Structure of the Oxygen-Evolving Complex of Photosystem II</title><author>Davis, Katherine M ; Palenik, Mark C ; Yan, Lifen ; Smith, Paul F ; Seidler, Gerald T ; Dismukes, G. Charles ; Pushkar, Yulia N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a415t-610f518e4f8172ef98f436eb7a24e59ea1ee7e6ed3e5ae9025e8e51832e9f97e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Energy</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Ligands</topic><topic>Oxidation state</topic><topic>Quantum mechanics</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davis, Katherine M</creatorcontrib><creatorcontrib>Palenik, Mark C</creatorcontrib><creatorcontrib>Yan, Lifen</creatorcontrib><creatorcontrib>Smith, Paul F</creatorcontrib><creatorcontrib>Seidler, Gerald T</creatorcontrib><creatorcontrib>Dismukes, G. Charles</creatorcontrib><creatorcontrib>Pushkar, Yulia N</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davis, Katherine M</au><au>Palenik, Mark C</au><au>Yan, Lifen</au><au>Smith, Paul F</au><au>Seidler, Gerald T</au><au>Dismukes, G. Charles</au><au>Pushkar, Yulia N</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X‑ray Emission Spectroscopy of Mn Coordination Complexes Toward Interpreting the Electronic Structure of the Oxygen-Evolving Complex of Photosystem II</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2016-02-18</date><risdate>2016</risdate><volume>120</volume><issue>6</issue><spage>3326</spage><epage>3333</epage><pages>3326-3333</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>X-ray emission (XES) spectroscopy is an attractive technique for analysis of the electronic structure of molecules, materials, and metalloproteins. However, a better understanding of XES results is required. Using a combination of experiment and ground-state density functional theory analysis, we rationalize differences in the X-ray emission spectra of multinuclear Mn complexes. Model compounds, including dinuclear [Mn2O2L′4]­(ClO4)3 (L′= 2,2′-bipyridyl, [1]) and two examples from the Mn4O4L6 “cubane” family of model compounds (L = (p-R-C6H4)­PO2 −, R = OCH3 [2], CH3 [3] ), were compared with the Oxygen Evolving Complex of Photosystem II. Our analysis shows that changes in the structure of the Mn complexes, resulting in changes to the spin polarization, can introduce significant spectral shifts in compounds of the same formal redox state. The implications of changes in spin polarization for understanding photosynthetic water-splitting catalysis is discussed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.5b10610</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2016-02, Vol.120 (6), p.3326-3333
issn 1932-7447
1932-7455
language eng
recordid cdi_osti_scitechconnect_1239425
source ACS Publications
subjects Energy
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Ligands
Oxidation state
Quantum mechanics
Transition metals
title X‑ray Emission Spectroscopy of Mn Coordination Complexes Toward Interpreting the Electronic Structure of the Oxygen-Evolving Complex of Photosystem II
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T23%3A45%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X%E2%80%91ray%20Emission%20Spectroscopy%20of%20Mn%20Coordination%20Complexes%20Toward%20Interpreting%20the%20Electronic%20Structure%20of%20the%20Oxygen-Evolving%20Complex%20of%20Photosystem%20II&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Davis,%20Katherine%20M&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2016-02-18&rft.volume=120&rft.issue=6&rft.spage=3326&rft.epage=3333&rft.pages=3326-3333&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.5b10610&rft_dat=%3Cacs_osti_%3Ea52346035%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true