X‑ray Emission Spectroscopy of Mn Coordination Complexes Toward Interpreting the Electronic Structure of the Oxygen-Evolving Complex of Photosystem II

X-ray emission (XES) spectroscopy is an attractive technique for analysis of the electronic structure of molecules, materials, and metalloproteins. However, a better understanding of XES results is required. Using a combination of experiment and ground-state density functional theory analysis, we ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2016-02, Vol.120 (6), p.3326-3333
Hauptverfasser: Davis, Katherine M, Palenik, Mark C, Yan, Lifen, Smith, Paul F, Seidler, Gerald T, Dismukes, G. Charles, Pushkar, Yulia N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:X-ray emission (XES) spectroscopy is an attractive technique for analysis of the electronic structure of molecules, materials, and metalloproteins. However, a better understanding of XES results is required. Using a combination of experiment and ground-state density functional theory analysis, we rationalize differences in the X-ray emission spectra of multinuclear Mn complexes. Model compounds, including dinuclear [Mn2O2L′4]­(ClO4)3 (L′= 2,2′-bipyridyl, [1]) and two examples from the Mn4O4L6 “cubane” family of model compounds (L = (p-R-C6H4)­PO2 −, R = OCH3 [2], CH3 [3] ), were compared with the Oxygen Evolving Complex of Photosystem II. Our analysis shows that changes in the structure of the Mn complexes, resulting in changes to the spin polarization, can introduce significant spectral shifts in compounds of the same formal redox state. The implications of changes in spin polarization for understanding photosynthetic water-splitting catalysis is discussed.
ISSN:1932-7447
1932-7455
DOI:10.1021/acs.jpcc.5b10610