Tuning g factors of core-shell nanoparticles by controlled positioning of magnetic impurities
We present a theoretical platform for modeling the electronic and magneto-optic properties of magnetically doped core-shell nanoparticles that has, as a central prediction, a mechanism by which the g factors in these nanoparticles can be tuned over a wide range by controlled positioning of magnetic...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2016-02, Vol.93 (7), Article 075431 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a theoretical platform for modeling the electronic and magneto-optic properties of magnetically doped core-shell nanoparticles that has, as a central prediction, a mechanism by which the g factors in these nanoparticles can be tuned over a wide range by controlled positioning of magnetic impurities. We illustrate this effect for wide-gap Mn-doped CdS-ZnS core-shell particles and point out several unexpected trends that merit extended experimental investigation. The ability to tune g factors will make core-shell nanostructures viable candidates for spintronic applications, and the comprehensive modeling approach outlined here will be a powerful tool for predicting their properties as well as for optimizing the design of novel spintronic devices. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.93.075431 |