Internal configuration of prismatic lithium-ion cells at the onset of mechanically induced short circuit

The response of Li-ion cells to mechanically induced internal electrical shorts is an important safety performance metric design. We assume that the battery internal configuration at the onset of electrical short influences the subsequent response and can be used to gauge the safety risk. We subject...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2016-02, Vol.306 (C), p.424-430
Hauptverfasser: Wang, Hsin, Simunovic, Srdjan, Maleki, Hossien, Howard, Jason N., Hallmark, Jerald A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The response of Li-ion cells to mechanically induced internal electrical shorts is an important safety performance metric design. We assume that the battery internal configuration at the onset of electrical short influences the subsequent response and can be used to gauge the safety risk. We subjected a series of prismatic Li-ion cells to lateral pinching using 0.25″, 0.5″, 1″, 2″ and 3″ diameter steel balls until the onset of internal short. The external aluminum enclosure froze the internal cell configuration at the onset of short and enabled us to cross-section the cells, and take the cross-section images. The images indicate that an internal electric short is preceded by extensive strain partitioning in the cells, fracturing and tearing of the current collectors, and cracking and slipping of the electrode layers with multiple fault lines across multiple layers. These observations are at odds with a common notion of homogeneous deformation across the layers and strain hardening of electrodes that eventually punch through the separator and short the cell. The faults are akin to tectonic movements of multiple layers that are characteristic of granular materials and bonded aggregates. The short circuits occur after extensive internal faulting, which implies significant stretching and tearing of separators. •Cross-sectional areas of mechanically deformed Li-ion cells were studied.•Tearing of current collectors, kinking and fault lines were observed.•Internal short circuit occurs under complicated mechanical deformation conditions.•New mechanical models are needed to simulate the soil-like behavior.
ISSN:0378-7753
1873-2755
DOI:10.1016/j.jpowsour.2015.12.026