The capital intensity of photovoltaics manufacturing: barrier to scale and opportunity for innovation

Using a bottom-up cost model, we assess the impact of initial factory capital expenditure (capex) on photovoltaic (PV) module minimum sustainable price (MSP) and industry-wide trends. We find capex to have two important impacts on PV manufacturing. First, capex strongly influences the per-unit MSP o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2015-01, Vol.8 (12), p.3395-3408
Hauptverfasser: Powell, Douglas M, Fu, Ran, Horowitz, Kelsey, Basore, Paul A, Woodhouse, Michael, Buonassisi, Tonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3408
container_issue 12
container_start_page 3395
container_title Energy & environmental science
container_volume 8
creator Powell, Douglas M
Fu, Ran
Horowitz, Kelsey
Basore, Paul A
Woodhouse, Michael
Buonassisi, Tonio
description Using a bottom-up cost model, we assess the impact of initial factory capital expenditure (capex) on photovoltaic (PV) module minimum sustainable price (MSP) and industry-wide trends. We find capex to have two important impacts on PV manufacturing. First, capex strongly influences the per-unit MSP of a c-Si module: we calculate that the capex-related elements sum to 22% of MSP for an integrated wafer, cell, and module manufacturer. This fraction provides a significant opportunity to reduce MSP toward the U.S. DOE SunShot module price target through capex innovation. Second, a combination of high capex and low margins leads to a poor financial rate of return, which limits the growth rate of PV module manufacturing capacity. We quantify the capex of Czochralski-based crystalline silicon (c-Si) PV manufacturing, summing to 0.68 $/W sub(aCap) ($ per annual production capacity in watts, $year/W) from wafer to module and 1.01 $/W sub(aCap) from polysilicon to module. At a sustainable operating margin determined by the MSP methodology for our bottom-up scenario, we calculate the sustainable growth rate of PV manufacturing capacity to be similar to 19% annually - below the historical trend of similar to 50% annually. We conclude with a discussion of innovation opportunities to reduce the capex of PV manufacturing through both incremental and disruptive process innovation with c-Si, platform innovations, and financial approaches.
doi_str_mv 10.1039/c5ee01509j
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1235417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808088782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-e9bac0d70bc4124c262c99bb58f4ce4dca98c8a64c839595dd0bde1b8f14fd813</originalsourceid><addsrcrecordid>eNqFkT1PwzAURSMEEqWw8AssJoRUsBM7ttlQVb5UiaXMkfPyQl2ldrAdpP57UgozusO9w9FZbpZdMnrLaKHvQCBSJqjeHGUTJgWfCUnL479d6vw0O4txQ2mZU6knGa7WSMD0NpmOWJfQRZt2xLekX_vkv3yXjIVItsYNrYE0BOs-7kltQrAYSPIkgumQGNcQ3_c-pMHtBa0Po875L5Osd-fZSWu6iBe_Pc3eHxer-fNs-fb0Mn9YzoBLnWaoawO0kbQGznIOeZmD1nUtVMsBeQNGK1Cm5KAKLbRoGlo3yGrVMt42ihXT7Org9THZKoJNCGvwziGkiuWF4EyO0PUB6oP_HDCmamsjYNcZh36IFVN0jJIq_x-VSmpFGaUjenNAIfgYA7ZVH-zWhF3FaLX_ppqLxeLnm9fiGxZvg3k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787980100</pqid></control><display><type>article</type><title>The capital intensity of photovoltaics manufacturing: barrier to scale and opportunity for innovation</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Powell, Douglas M ; Fu, Ran ; Horowitz, Kelsey ; Basore, Paul A ; Woodhouse, Michael ; Buonassisi, Tonio</creator><creatorcontrib>Powell, Douglas M ; Fu, Ran ; Horowitz, Kelsey ; Basore, Paul A ; Woodhouse, Michael ; Buonassisi, Tonio ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Using a bottom-up cost model, we assess the impact of initial factory capital expenditure (capex) on photovoltaic (PV) module minimum sustainable price (MSP) and industry-wide trends. We find capex to have two important impacts on PV manufacturing. First, capex strongly influences the per-unit MSP of a c-Si module: we calculate that the capex-related elements sum to 22% of MSP for an integrated wafer, cell, and module manufacturer. This fraction provides a significant opportunity to reduce MSP toward the U.S. DOE SunShot module price target through capex innovation. Second, a combination of high capex and low margins leads to a poor financial rate of return, which limits the growth rate of PV module manufacturing capacity. We quantify the capex of Czochralski-based crystalline silicon (c-Si) PV manufacturing, summing to 0.68 $/W sub(aCap) ($ per annual production capacity in watts, $year/W) from wafer to module and 1.01 $/W sub(aCap) from polysilicon to module. At a sustainable operating margin determined by the MSP methodology for our bottom-up scenario, we calculate the sustainable growth rate of PV manufacturing capacity to be similar to 19% annually - below the historical trend of similar to 50% annually. We conclude with a discussion of innovation opportunities to reduce the capex of PV manufacturing through both incremental and disruptive process innovation with c-Si, platform innovations, and financial approaches.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c5ee01509j</identifier><language>eng</language><publisher>United States: Royal Society of Chemistry</publisher><subject>capex ; ENERGY PLANNING, POLICY, AND ECONOMY ; initial factory capital expenditure ; Innovation ; manufacturing ; Mathematical models ; minimum sustainable price ; Modules ; msp ; photovoltaic ; Photovoltaic cells ; Solar cells ; SOLAR ENERGY ; Sustainability ; Trends ; Wafers</subject><ispartof>Energy &amp; environmental science, 2015-01, Vol.8 (12), p.3395-3408</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-e9bac0d70bc4124c262c99bb58f4ce4dca98c8a64c839595dd0bde1b8f14fd813</citedby><cites>FETCH-LOGICAL-c479t-e9bac0d70bc4124c262c99bb58f4ce4dca98c8a64c839595dd0bde1b8f14fd813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1235417$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Powell, Douglas M</creatorcontrib><creatorcontrib>Fu, Ran</creatorcontrib><creatorcontrib>Horowitz, Kelsey</creatorcontrib><creatorcontrib>Basore, Paul A</creatorcontrib><creatorcontrib>Woodhouse, Michael</creatorcontrib><creatorcontrib>Buonassisi, Tonio</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>The capital intensity of photovoltaics manufacturing: barrier to scale and opportunity for innovation</title><title>Energy &amp; environmental science</title><description>Using a bottom-up cost model, we assess the impact of initial factory capital expenditure (capex) on photovoltaic (PV) module minimum sustainable price (MSP) and industry-wide trends. We find capex to have two important impacts on PV manufacturing. First, capex strongly influences the per-unit MSP of a c-Si module: we calculate that the capex-related elements sum to 22% of MSP for an integrated wafer, cell, and module manufacturer. This fraction provides a significant opportunity to reduce MSP toward the U.S. DOE SunShot module price target through capex innovation. Second, a combination of high capex and low margins leads to a poor financial rate of return, which limits the growth rate of PV module manufacturing capacity. We quantify the capex of Czochralski-based crystalline silicon (c-Si) PV manufacturing, summing to 0.68 $/W sub(aCap) ($ per annual production capacity in watts, $year/W) from wafer to module and 1.01 $/W sub(aCap) from polysilicon to module. At a sustainable operating margin determined by the MSP methodology for our bottom-up scenario, we calculate the sustainable growth rate of PV manufacturing capacity to be similar to 19% annually - below the historical trend of similar to 50% annually. We conclude with a discussion of innovation opportunities to reduce the capex of PV manufacturing through both incremental and disruptive process innovation with c-Si, platform innovations, and financial approaches.</description><subject>capex</subject><subject>ENERGY PLANNING, POLICY, AND ECONOMY</subject><subject>initial factory capital expenditure</subject><subject>Innovation</subject><subject>manufacturing</subject><subject>Mathematical models</subject><subject>minimum sustainable price</subject><subject>Modules</subject><subject>msp</subject><subject>photovoltaic</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>SOLAR ENERGY</subject><subject>Sustainability</subject><subject>Trends</subject><subject>Wafers</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkT1PwzAURSMEEqWw8AssJoRUsBM7ttlQVb5UiaXMkfPyQl2ldrAdpP57UgozusO9w9FZbpZdMnrLaKHvQCBSJqjeHGUTJgWfCUnL479d6vw0O4txQ2mZU6knGa7WSMD0NpmOWJfQRZt2xLekX_vkv3yXjIVItsYNrYE0BOs-7kltQrAYSPIkgumQGNcQ3_c-pMHtBa0Po875L5Osd-fZSWu6iBe_Pc3eHxer-fNs-fb0Mn9YzoBLnWaoawO0kbQGznIOeZmD1nUtVMsBeQNGK1Cm5KAKLbRoGlo3yGrVMt42ihXT7Org9THZKoJNCGvwziGkiuWF4EyO0PUB6oP_HDCmamsjYNcZh36IFVN0jJIq_x-VSmpFGaUjenNAIfgYA7ZVH-zWhF3FaLX_ppqLxeLnm9fiGxZvg3k</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Powell, Douglas M</creator><creator>Fu, Ran</creator><creator>Horowitz, Kelsey</creator><creator>Basore, Paul A</creator><creator>Woodhouse, Michael</creator><creator>Buonassisi, Tonio</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150101</creationdate><title>The capital intensity of photovoltaics manufacturing: barrier to scale and opportunity for innovation</title><author>Powell, Douglas M ; Fu, Ran ; Horowitz, Kelsey ; Basore, Paul A ; Woodhouse, Michael ; Buonassisi, Tonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-e9bac0d70bc4124c262c99bb58f4ce4dca98c8a64c839595dd0bde1b8f14fd813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>capex</topic><topic>ENERGY PLANNING, POLICY, AND ECONOMY</topic><topic>initial factory capital expenditure</topic><topic>Innovation</topic><topic>manufacturing</topic><topic>Mathematical models</topic><topic>minimum sustainable price</topic><topic>Modules</topic><topic>msp</topic><topic>photovoltaic</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>SOLAR ENERGY</topic><topic>Sustainability</topic><topic>Trends</topic><topic>Wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Powell, Douglas M</creatorcontrib><creatorcontrib>Fu, Ran</creatorcontrib><creatorcontrib>Horowitz, Kelsey</creatorcontrib><creatorcontrib>Basore, Paul A</creatorcontrib><creatorcontrib>Woodhouse, Michael</creatorcontrib><creatorcontrib>Buonassisi, Tonio</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Energy &amp; environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Powell, Douglas M</au><au>Fu, Ran</au><au>Horowitz, Kelsey</au><au>Basore, Paul A</au><au>Woodhouse, Michael</au><au>Buonassisi, Tonio</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The capital intensity of photovoltaics manufacturing: barrier to scale and opportunity for innovation</atitle><jtitle>Energy &amp; environmental science</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>8</volume><issue>12</issue><spage>3395</spage><epage>3408</epage><pages>3395-3408</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Using a bottom-up cost model, we assess the impact of initial factory capital expenditure (capex) on photovoltaic (PV) module minimum sustainable price (MSP) and industry-wide trends. We find capex to have two important impacts on PV manufacturing. First, capex strongly influences the per-unit MSP of a c-Si module: we calculate that the capex-related elements sum to 22% of MSP for an integrated wafer, cell, and module manufacturer. This fraction provides a significant opportunity to reduce MSP toward the U.S. DOE SunShot module price target through capex innovation. Second, a combination of high capex and low margins leads to a poor financial rate of return, which limits the growth rate of PV module manufacturing capacity. We quantify the capex of Czochralski-based crystalline silicon (c-Si) PV manufacturing, summing to 0.68 $/W sub(aCap) ($ per annual production capacity in watts, $year/W) from wafer to module and 1.01 $/W sub(aCap) from polysilicon to module. At a sustainable operating margin determined by the MSP methodology for our bottom-up scenario, we calculate the sustainable growth rate of PV manufacturing capacity to be similar to 19% annually - below the historical trend of similar to 50% annually. We conclude with a discussion of innovation opportunities to reduce the capex of PV manufacturing through both incremental and disruptive process innovation with c-Si, platform innovations, and financial approaches.</abstract><cop>United States</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c5ee01509j</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1754-5692
ispartof Energy & environmental science, 2015-01, Vol.8 (12), p.3395-3408
issn 1754-5692
1754-5706
language eng
recordid cdi_osti_scitechconnect_1235417
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects capex
ENERGY PLANNING, POLICY, AND ECONOMY
initial factory capital expenditure
Innovation
manufacturing
Mathematical models
minimum sustainable price
Modules
msp
photovoltaic
Photovoltaic cells
Solar cells
SOLAR ENERGY
Sustainability
Trends
Wafers
title The capital intensity of photovoltaics manufacturing: barrier to scale and opportunity for innovation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A01%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20capital%20intensity%20of%20photovoltaics%20manufacturing:%20barrier%20to%20scale%20and%20opportunity%20for%20innovation&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Powell,%20Douglas%20M&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2015-01-01&rft.volume=8&rft.issue=12&rft.spage=3395&rft.epage=3408&rft.pages=3395-3408&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c5ee01509j&rft_dat=%3Cproquest_osti_%3E1808088782%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787980100&rft_id=info:pmid/&rfr_iscdi=true