The capital intensity of photovoltaics manufacturing: barrier to scale and opportunity for innovation
Using a bottom-up cost model, we assess the impact of initial factory capital expenditure (capex) on photovoltaic (PV) module minimum sustainable price (MSP) and industry-wide trends. We find capex to have two important impacts on PV manufacturing. First, capex strongly influences the per-unit MSP o...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2015-01, Vol.8 (12), p.3395-3408 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3408 |
---|---|
container_issue | 12 |
container_start_page | 3395 |
container_title | Energy & environmental science |
container_volume | 8 |
creator | Powell, Douglas M Fu, Ran Horowitz, Kelsey Basore, Paul A Woodhouse, Michael Buonassisi, Tonio |
description | Using a bottom-up cost model, we assess the impact of initial factory capital expenditure (capex) on photovoltaic (PV) module minimum sustainable price (MSP) and industry-wide trends. We find capex to have two important impacts on PV manufacturing. First, capex strongly influences the per-unit MSP of a c-Si module: we calculate that the capex-related elements sum to 22% of MSP for an integrated wafer, cell, and module manufacturer. This fraction provides a significant opportunity to reduce MSP toward the U.S. DOE SunShot module price target through capex innovation. Second, a combination of high capex and low margins leads to a poor financial rate of return, which limits the growth rate of PV module manufacturing capacity. We quantify the capex of Czochralski-based crystalline silicon (c-Si) PV manufacturing, summing to 0.68 $/W sub(aCap) ($ per annual production capacity in watts, $year/W) from wafer to module and 1.01 $/W sub(aCap) from polysilicon to module. At a sustainable operating margin determined by the MSP methodology for our bottom-up scenario, we calculate the sustainable growth rate of PV manufacturing capacity to be similar to 19% annually - below the historical trend of similar to 50% annually. We conclude with a discussion of innovation opportunities to reduce the capex of PV manufacturing through both incremental and disruptive process innovation with c-Si, platform innovations, and financial approaches. |
doi_str_mv | 10.1039/c5ee01509j |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1235417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808088782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-e9bac0d70bc4124c262c99bb58f4ce4dca98c8a64c839595dd0bde1b8f14fd813</originalsourceid><addsrcrecordid>eNqFkT1PwzAURSMEEqWw8AssJoRUsBM7ttlQVb5UiaXMkfPyQl2ldrAdpP57UgozusO9w9FZbpZdMnrLaKHvQCBSJqjeHGUTJgWfCUnL479d6vw0O4txQ2mZU6knGa7WSMD0NpmOWJfQRZt2xLekX_vkv3yXjIVItsYNrYE0BOs-7kltQrAYSPIkgumQGNcQ3_c-pMHtBa0Po875L5Osd-fZSWu6iBe_Pc3eHxer-fNs-fb0Mn9YzoBLnWaoawO0kbQGznIOeZmD1nUtVMsBeQNGK1Cm5KAKLbRoGlo3yGrVMt42ihXT7Org9THZKoJNCGvwziGkiuWF4EyO0PUB6oP_HDCmamsjYNcZh36IFVN0jJIq_x-VSmpFGaUjenNAIfgYA7ZVH-zWhF3FaLX_ppqLxeLnm9fiGxZvg3k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1787980100</pqid></control><display><type>article</type><title>The capital intensity of photovoltaics manufacturing: barrier to scale and opportunity for innovation</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Powell, Douglas M ; Fu, Ran ; Horowitz, Kelsey ; Basore, Paul A ; Woodhouse, Michael ; Buonassisi, Tonio</creator><creatorcontrib>Powell, Douglas M ; Fu, Ran ; Horowitz, Kelsey ; Basore, Paul A ; Woodhouse, Michael ; Buonassisi, Tonio ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Using a bottom-up cost model, we assess the impact of initial factory capital expenditure (capex) on photovoltaic (PV) module minimum sustainable price (MSP) and industry-wide trends. We find capex to have two important impacts on PV manufacturing. First, capex strongly influences the per-unit MSP of a c-Si module: we calculate that the capex-related elements sum to 22% of MSP for an integrated wafer, cell, and module manufacturer. This fraction provides a significant opportunity to reduce MSP toward the U.S. DOE SunShot module price target through capex innovation. Second, a combination of high capex and low margins leads to a poor financial rate of return, which limits the growth rate of PV module manufacturing capacity. We quantify the capex of Czochralski-based crystalline silicon (c-Si) PV manufacturing, summing to 0.68 $/W sub(aCap) ($ per annual production capacity in watts, $year/W) from wafer to module and 1.01 $/W sub(aCap) from polysilicon to module. At a sustainable operating margin determined by the MSP methodology for our bottom-up scenario, we calculate the sustainable growth rate of PV manufacturing capacity to be similar to 19% annually - below the historical trend of similar to 50% annually. We conclude with a discussion of innovation opportunities to reduce the capex of PV manufacturing through both incremental and disruptive process innovation with c-Si, platform innovations, and financial approaches.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/c5ee01509j</identifier><language>eng</language><publisher>United States: Royal Society of Chemistry</publisher><subject>capex ; ENERGY PLANNING, POLICY, AND ECONOMY ; initial factory capital expenditure ; Innovation ; manufacturing ; Mathematical models ; minimum sustainable price ; Modules ; msp ; photovoltaic ; Photovoltaic cells ; Solar cells ; SOLAR ENERGY ; Sustainability ; Trends ; Wafers</subject><ispartof>Energy & environmental science, 2015-01, Vol.8 (12), p.3395-3408</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-e9bac0d70bc4124c262c99bb58f4ce4dca98c8a64c839595dd0bde1b8f14fd813</citedby><cites>FETCH-LOGICAL-c479t-e9bac0d70bc4124c262c99bb58f4ce4dca98c8a64c839595dd0bde1b8f14fd813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1235417$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Powell, Douglas M</creatorcontrib><creatorcontrib>Fu, Ran</creatorcontrib><creatorcontrib>Horowitz, Kelsey</creatorcontrib><creatorcontrib>Basore, Paul A</creatorcontrib><creatorcontrib>Woodhouse, Michael</creatorcontrib><creatorcontrib>Buonassisi, Tonio</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>The capital intensity of photovoltaics manufacturing: barrier to scale and opportunity for innovation</title><title>Energy & environmental science</title><description>Using a bottom-up cost model, we assess the impact of initial factory capital expenditure (capex) on photovoltaic (PV) module minimum sustainable price (MSP) and industry-wide trends. We find capex to have two important impacts on PV manufacturing. First, capex strongly influences the per-unit MSP of a c-Si module: we calculate that the capex-related elements sum to 22% of MSP for an integrated wafer, cell, and module manufacturer. This fraction provides a significant opportunity to reduce MSP toward the U.S. DOE SunShot module price target through capex innovation. Second, a combination of high capex and low margins leads to a poor financial rate of return, which limits the growth rate of PV module manufacturing capacity. We quantify the capex of Czochralski-based crystalline silicon (c-Si) PV manufacturing, summing to 0.68 $/W sub(aCap) ($ per annual production capacity in watts, $year/W) from wafer to module and 1.01 $/W sub(aCap) from polysilicon to module. At a sustainable operating margin determined by the MSP methodology for our bottom-up scenario, we calculate the sustainable growth rate of PV manufacturing capacity to be similar to 19% annually - below the historical trend of similar to 50% annually. We conclude with a discussion of innovation opportunities to reduce the capex of PV manufacturing through both incremental and disruptive process innovation with c-Si, platform innovations, and financial approaches.</description><subject>capex</subject><subject>ENERGY PLANNING, POLICY, AND ECONOMY</subject><subject>initial factory capital expenditure</subject><subject>Innovation</subject><subject>manufacturing</subject><subject>Mathematical models</subject><subject>minimum sustainable price</subject><subject>Modules</subject><subject>msp</subject><subject>photovoltaic</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>SOLAR ENERGY</subject><subject>Sustainability</subject><subject>Trends</subject><subject>Wafers</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkT1PwzAURSMEEqWw8AssJoRUsBM7ttlQVb5UiaXMkfPyQl2ldrAdpP57UgozusO9w9FZbpZdMnrLaKHvQCBSJqjeHGUTJgWfCUnL479d6vw0O4txQ2mZU6knGa7WSMD0NpmOWJfQRZt2xLekX_vkv3yXjIVItsYNrYE0BOs-7kltQrAYSPIkgumQGNcQ3_c-pMHtBa0Po875L5Osd-fZSWu6iBe_Pc3eHxer-fNs-fb0Mn9YzoBLnWaoawO0kbQGznIOeZmD1nUtVMsBeQNGK1Cm5KAKLbRoGlo3yGrVMt42ihXT7Org9THZKoJNCGvwziGkiuWF4EyO0PUB6oP_HDCmamsjYNcZh36IFVN0jJIq_x-VSmpFGaUjenNAIfgYA7ZVH-zWhF3FaLX_ppqLxeLnm9fiGxZvg3k</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Powell, Douglas M</creator><creator>Fu, Ran</creator><creator>Horowitz, Kelsey</creator><creator>Basore, Paul A</creator><creator>Woodhouse, Michael</creator><creator>Buonassisi, Tonio</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150101</creationdate><title>The capital intensity of photovoltaics manufacturing: barrier to scale and opportunity for innovation</title><author>Powell, Douglas M ; Fu, Ran ; Horowitz, Kelsey ; Basore, Paul A ; Woodhouse, Michael ; Buonassisi, Tonio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-e9bac0d70bc4124c262c99bb58f4ce4dca98c8a64c839595dd0bde1b8f14fd813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>capex</topic><topic>ENERGY PLANNING, POLICY, AND ECONOMY</topic><topic>initial factory capital expenditure</topic><topic>Innovation</topic><topic>manufacturing</topic><topic>Mathematical models</topic><topic>minimum sustainable price</topic><topic>Modules</topic><topic>msp</topic><topic>photovoltaic</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>SOLAR ENERGY</topic><topic>Sustainability</topic><topic>Trends</topic><topic>Wafers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Powell, Douglas M</creatorcontrib><creatorcontrib>Fu, Ran</creatorcontrib><creatorcontrib>Horowitz, Kelsey</creatorcontrib><creatorcontrib>Basore, Paul A</creatorcontrib><creatorcontrib>Woodhouse, Michael</creatorcontrib><creatorcontrib>Buonassisi, Tonio</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Powell, Douglas M</au><au>Fu, Ran</au><au>Horowitz, Kelsey</au><au>Basore, Paul A</au><au>Woodhouse, Michael</au><au>Buonassisi, Tonio</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The capital intensity of photovoltaics manufacturing: barrier to scale and opportunity for innovation</atitle><jtitle>Energy & environmental science</jtitle><date>2015-01-01</date><risdate>2015</risdate><volume>8</volume><issue>12</issue><spage>3395</spage><epage>3408</epage><pages>3395-3408</pages><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Using a bottom-up cost model, we assess the impact of initial factory capital expenditure (capex) on photovoltaic (PV) module minimum sustainable price (MSP) and industry-wide trends. We find capex to have two important impacts on PV manufacturing. First, capex strongly influences the per-unit MSP of a c-Si module: we calculate that the capex-related elements sum to 22% of MSP for an integrated wafer, cell, and module manufacturer. This fraction provides a significant opportunity to reduce MSP toward the U.S. DOE SunShot module price target through capex innovation. Second, a combination of high capex and low margins leads to a poor financial rate of return, which limits the growth rate of PV module manufacturing capacity. We quantify the capex of Czochralski-based crystalline silicon (c-Si) PV manufacturing, summing to 0.68 $/W sub(aCap) ($ per annual production capacity in watts, $year/W) from wafer to module and 1.01 $/W sub(aCap) from polysilicon to module. At a sustainable operating margin determined by the MSP methodology for our bottom-up scenario, we calculate the sustainable growth rate of PV manufacturing capacity to be similar to 19% annually - below the historical trend of similar to 50% annually. We conclude with a discussion of innovation opportunities to reduce the capex of PV manufacturing through both incremental and disruptive process innovation with c-Si, platform innovations, and financial approaches.</abstract><cop>United States</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c5ee01509j</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2015-01, Vol.8 (12), p.3395-3408 |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_osti_scitechconnect_1235417 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | capex ENERGY PLANNING, POLICY, AND ECONOMY initial factory capital expenditure Innovation manufacturing Mathematical models minimum sustainable price Modules msp photovoltaic Photovoltaic cells Solar cells SOLAR ENERGY Sustainability Trends Wafers |
title | The capital intensity of photovoltaics manufacturing: barrier to scale and opportunity for innovation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A01%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20capital%20intensity%20of%20photovoltaics%20manufacturing:%20barrier%20to%20scale%20and%20opportunity%20for%20innovation&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Powell,%20Douglas%20M&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2015-01-01&rft.volume=8&rft.issue=12&rft.spage=3395&rft.epage=3408&rft.pages=3395-3408&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/c5ee01509j&rft_dat=%3Cproquest_osti_%3E1808088782%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1787980100&rft_id=info:pmid/&rfr_iscdi=true |