The capital intensity of photovoltaics manufacturing: barrier to scale and opportunity for innovation

Using a bottom-up cost model, we assess the impact of initial factory capital expenditure (capex) on photovoltaic (PV) module minimum sustainable price (MSP) and industry-wide trends. We find capex to have two important impacts on PV manufacturing. First, capex strongly influences the per-unit MSP o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy & environmental science 2015-01, Vol.8 (12), p.3395-3408
Hauptverfasser: Powell, Douglas M, Fu, Ran, Horowitz, Kelsey, Basore, Paul A, Woodhouse, Michael, Buonassisi, Tonio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using a bottom-up cost model, we assess the impact of initial factory capital expenditure (capex) on photovoltaic (PV) module minimum sustainable price (MSP) and industry-wide trends. We find capex to have two important impacts on PV manufacturing. First, capex strongly influences the per-unit MSP of a c-Si module: we calculate that the capex-related elements sum to 22% of MSP for an integrated wafer, cell, and module manufacturer. This fraction provides a significant opportunity to reduce MSP toward the U.S. DOE SunShot module price target through capex innovation. Second, a combination of high capex and low margins leads to a poor financial rate of return, which limits the growth rate of PV module manufacturing capacity. We quantify the capex of Czochralski-based crystalline silicon (c-Si) PV manufacturing, summing to 0.68 $/W sub(aCap) ($ per annual production capacity in watts, $year/W) from wafer to module and 1.01 $/W sub(aCap) from polysilicon to module. At a sustainable operating margin determined by the MSP methodology for our bottom-up scenario, we calculate the sustainable growth rate of PV manufacturing capacity to be similar to 19% annually - below the historical trend of similar to 50% annually. We conclude with a discussion of innovation opportunities to reduce the capex of PV manufacturing through both incremental and disruptive process innovation with c-Si, platform innovations, and financial approaches.
ISSN:1754-5692
1754-5706
DOI:10.1039/c5ee01509j