High-resolution in situ observations of electron precipitation-causing EMIC waves

Electromagnetic ion cyclotron (EMIC) waves are thought to be important drivers of energetic electron losses from the outer radiation belt through precipitation into the atmosphere. While the theoretical possibility of pitch angle scattering‐driven losses from these waves has been recognized for more...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2015-11, Vol.42 (22), p.9633-9641
Hauptverfasser: Rodger, Craig J., Hendry, Aaron T., Clilverd, Mark A., Kletzing, Craig A., Brundell, James B., Reeves, Geoffrey D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electromagnetic ion cyclotron (EMIC) waves are thought to be important drivers of energetic electron losses from the outer radiation belt through precipitation into the atmosphere. While the theoretical possibility of pitch angle scattering‐driven losses from these waves has been recognized for more than four decades, there have been limited experimental precipitation observations to support this concept. We have combined satellite‐based observations of the characteristics of EMIC waves, with satellite and ground‐based observations of the EMIC‐induced electron precipitation. In a detailed case study, supplemented by an additional four examples, we are able to constrain for the first time the location, size, and energy range of EMIC‐induced electron precipitation inferred from coincident precipitation data and relate them to the EMIC wave frequency, wave power, and ion band of the wave as measured in situ by the Van Allen Probes. These observations will better constrain modeling into the importance of EMIC wave‐particle interactions. Key Points EMIC waves are thought to be highly important drivers of electron loss from the outer radiation belt To date, there are few experimental examples of precipitation‐causing EMIC events Simultaneous in situ EMIC wave, plasma, and precipitation flux measurements made for the first time
ISSN:0094-8276
1944-8007
DOI:10.1002/2015GL066581