Non-destructive measurement of in-operando lithium concentration in batteries via x-ray Compton scattering
Non-destructive determination of lithium distribution in a working battery is key for addressing both efficiency and safety issues. Although various techniques have been developed to map the lithium distribution in electrodes, these methods are mostly applicable to test cells. Here, we propose the u...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2016-01, Vol.119 (2) |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Non-destructive determination of lithium distribution in a working battery is key for addressing both efficiency and safety issues. Although various techniques have been developed to map the lithium distribution in electrodes, these methods are mostly applicable to test cells. Here, we propose the use of high-energy x-ray Compton scattering spectroscopy to measure the local lithium concentration in closed electrochemical cells. A combination of experimental measurements and parallel first-principles computations is used to show that the shape parameter S of the Compton profile is linearly proportional to lithium concentration and thus provides a viable descriptor for this important quantity. The merits and applicability of our method are demonstrated with illustrative examples of LixMn2O4 cathodes and a working commercial lithium coin battery CR2032. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4939304 |