Topotactic Transformations of Metal–Organic Frameworks to Highly Porous and Stable Inorganic Sorbents for Efficient Radionuclide Sequestration
Innovative solid-phase sorbent technologies are needed to extract radionuclides from harsh media for environmental remediation and in order to close the nuclear fuel cycle. Highly porous inorganic materials with remarkable sorptive properties have been prepared by topotactic transformations of metal...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2014-09, Vol.26 (18), p.5231-5243 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Innovative solid-phase sorbent technologies are needed to extract radionuclides from harsh media for environmental remediation and in order to close the nuclear fuel cycle. Highly porous inorganic materials with remarkable sorptive properties have been prepared by topotactic transformations of metal–organic frameworks (MOFs) using both basic and acidic solutions. Treatment of Ti and Zr nanoMOFs with NaOH, Na3PO4, and H3PO4 yields Ti and Zr oxides, oxyphosphates, and phosphates via sacrificial removal of the organic ligands. This controlled ligand extraction process results in porous inorganic materials, which preserve the original MOF morphologies and impart useful surface functionalities, but are devoid of organic linkers. Structural investigation by X-ray absorption spectroscopy reveals preservation of the coordination environment of the scattering metal. Changing the MOF template introduces different metal and structural possibilities, while application of different digest solutions allows preparation of metal oxides, metal oxyphosphates, and metal phosphates. The high stability and porosity of these novel materials makes them ideally suited as nanosorbents in severe environments. Their potential for several radionuclide separations is demonstrated, including decontamination of high level nuclear waste, extraction of lanthanides, and remediation of radionuclide-contaminated seawater. |
---|---|
ISSN: | 0897-4756 1520-5002 |
DOI: | 10.1021/cm501894h |