Revealing the Mechanism of the Viscous-to-Elastic Crossover in Liquids

In this work, we report on inelastic X-ray scattering experiments combined with the molecular dynamics simulations on deeply supercritical Ar. The presented results unveil the mechanism and regimes of sound propagation in the liquid matter and provide compelling evidence for the adiabatic-to-isother...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2015-08, Vol.6 (15), p.3048-3053
Hauptverfasser: Bolmatov, Dima, Zhernenkov, Mikhail, Zav’yalov, Dmitry, Stoupin, Stanislav, Cai, Yong Q, Cunsolo, Alessandro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3053
container_issue 15
container_start_page 3048
container_title The journal of physical chemistry letters
container_volume 6
creator Bolmatov, Dima
Zhernenkov, Mikhail
Zav’yalov, Dmitry
Stoupin, Stanislav
Cai, Yong Q
Cunsolo, Alessandro
description In this work, we report on inelastic X-ray scattering experiments combined with the molecular dynamics simulations on deeply supercritical Ar. The presented results unveil the mechanism and regimes of sound propagation in the liquid matter and provide compelling evidence for the adiabatic-to-isothermal longitudinal sound propagation transition. We introduce a Hamiltonian predicting low-frequency transverse sound propagation gaps, which is confirmed by experimental findings and molecular dynamics calculations. As a result, a universal link is established between the positive sound dispersion (PSD) phenomenon and the origin of transverse sound propagation revealing the viscous-to-elastic crossover in liquids. The PSD and transverse phononic excitations evolve consistently with theoretical predictions. Both can be considered as a universal fingerprint of the dynamic response of a liquid, which is also observable in a subdomain of supercritical phase. The simultaneous disappearance of both these effects at elevated temperatures is a manifestation of the Frenkel line. We expect that these findings will advance the current understanding of fluids under extreme thermodynamic conditions.
doi_str_mv 10.1021/acs.jpclett.5b01338
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1229329</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1704349826</sourcerecordid><originalsourceid>FETCH-LOGICAL-a483t-4d1ff510a24eb3e81cf48e2050de3af7469936bd33a7a89a320b121a73db95273</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMobk5_gSDFK2-65aMf6aWMTYWJIOptSNNTl9E2W5MO_PdmaxWvhAM5hPc957wPQtcETwmmZCaVnW62qgLnpnGOCWP8BI1JFvEwJTw-_dOP0IW1G4yTDPP0HI1oQpOUYjJGy1fYg6x08xm4NQTPoNay0bYOTHn8-NBWmc6GzoSLSlqnVTBvjbVmD22gm2Cld50u7CU6K2Vl4Wp4J-h9uXibP4arl4en-f0qlBFnLowKUpYxwZJGkDPgRJURB4pjXACTZRolWcaSvGBMppJnklGcE0pkyoo8i2nKJui2n2v8KcIq7fzByjQNKCcIpRnzNUF3vWjbml0H1onap4Cqkg34LIKkOGJRxmnipayXqkOoFkqxbXUt2y9BsDhQFp6yGCiLgbJ33QwLuryG4tfzg9ULZr3g6DZd23go_478BvPrikM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1704349826</pqid></control><display><type>article</type><title>Revealing the Mechanism of the Viscous-to-Elastic Crossover in Liquids</title><source>ACS Publications</source><creator>Bolmatov, Dima ; Zhernenkov, Mikhail ; Zav’yalov, Dmitry ; Stoupin, Stanislav ; Cai, Yong Q ; Cunsolo, Alessandro</creator><creatorcontrib>Bolmatov, Dima ; Zhernenkov, Mikhail ; Zav’yalov, Dmitry ; Stoupin, Stanislav ; Cai, Yong Q ; Cunsolo, Alessandro ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>In this work, we report on inelastic X-ray scattering experiments combined with the molecular dynamics simulations on deeply supercritical Ar. The presented results unveil the mechanism and regimes of sound propagation in the liquid matter and provide compelling evidence for the adiabatic-to-isothermal longitudinal sound propagation transition. We introduce a Hamiltonian predicting low-frequency transverse sound propagation gaps, which is confirmed by experimental findings and molecular dynamics calculations. As a result, a universal link is established between the positive sound dispersion (PSD) phenomenon and the origin of transverse sound propagation revealing the viscous-to-elastic crossover in liquids. The PSD and transverse phononic excitations evolve consistently with theoretical predictions. Both can be considered as a universal fingerprint of the dynamic response of a liquid, which is also observable in a subdomain of supercritical phase. The simultaneous disappearance of both these effects at elevated temperatures is a manifestation of the Frenkel line. We expect that these findings will advance the current understanding of fluids under extreme thermodynamic conditions.</description><identifier>ISSN: 1948-7185</identifier><identifier>EISSN: 1948-7185</identifier><identifier>DOI: 10.1021/acs.jpclett.5b01338</identifier><identifier>PMID: 26267201</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry letters, 2015-08, Vol.6 (15), p.3048-3053</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a483t-4d1ff510a24eb3e81cf48e2050de3af7469936bd33a7a89a320b121a73db95273</citedby><cites>FETCH-LOGICAL-a483t-4d1ff510a24eb3e81cf48e2050de3af7469936bd33a7a89a320b121a73db95273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpclett.5b01338$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpclett.5b01338$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26267201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1229329$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bolmatov, Dima</creatorcontrib><creatorcontrib>Zhernenkov, Mikhail</creatorcontrib><creatorcontrib>Zav’yalov, Dmitry</creatorcontrib><creatorcontrib>Stoupin, Stanislav</creatorcontrib><creatorcontrib>Cai, Yong Q</creatorcontrib><creatorcontrib>Cunsolo, Alessandro</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>Revealing the Mechanism of the Viscous-to-Elastic Crossover in Liquids</title><title>The journal of physical chemistry letters</title><addtitle>J. Phys. Chem. Lett</addtitle><description>In this work, we report on inelastic X-ray scattering experiments combined with the molecular dynamics simulations on deeply supercritical Ar. The presented results unveil the mechanism and regimes of sound propagation in the liquid matter and provide compelling evidence for the adiabatic-to-isothermal longitudinal sound propagation transition. We introduce a Hamiltonian predicting low-frequency transverse sound propagation gaps, which is confirmed by experimental findings and molecular dynamics calculations. As a result, a universal link is established between the positive sound dispersion (PSD) phenomenon and the origin of transverse sound propagation revealing the viscous-to-elastic crossover in liquids. The PSD and transverse phononic excitations evolve consistently with theoretical predictions. Both can be considered as a universal fingerprint of the dynamic response of a liquid, which is also observable in a subdomain of supercritical phase. The simultaneous disappearance of both these effects at elevated temperatures is a manifestation of the Frenkel line. We expect that these findings will advance the current understanding of fluids under extreme thermodynamic conditions.</description><issn>1948-7185</issn><issn>1948-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhoMobk5_gSDFK2-65aMf6aWMTYWJIOptSNNTl9E2W5MO_PdmaxWvhAM5hPc957wPQtcETwmmZCaVnW62qgLnpnGOCWP8BI1JFvEwJTw-_dOP0IW1G4yTDPP0HI1oQpOUYjJGy1fYg6x08xm4NQTPoNay0bYOTHn8-NBWmc6GzoSLSlqnVTBvjbVmD22gm2Cld50u7CU6K2Vl4Wp4J-h9uXibP4arl4en-f0qlBFnLowKUpYxwZJGkDPgRJURB4pjXACTZRolWcaSvGBMppJnklGcE0pkyoo8i2nKJui2n2v8KcIq7fzByjQNKCcIpRnzNUF3vWjbml0H1onap4Cqkg34LIKkOGJRxmnipayXqkOoFkqxbXUt2y9BsDhQFp6yGCiLgbJ33QwLuryG4tfzg9ULZr3g6DZd23go_478BvPrikM</recordid><startdate>20150806</startdate><enddate>20150806</enddate><creator>Bolmatov, Dima</creator><creator>Zhernenkov, Mikhail</creator><creator>Zav’yalov, Dmitry</creator><creator>Stoupin, Stanislav</creator><creator>Cai, Yong Q</creator><creator>Cunsolo, Alessandro</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20150806</creationdate><title>Revealing the Mechanism of the Viscous-to-Elastic Crossover in Liquids</title><author>Bolmatov, Dima ; Zhernenkov, Mikhail ; Zav’yalov, Dmitry ; Stoupin, Stanislav ; Cai, Yong Q ; Cunsolo, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a483t-4d1ff510a24eb3e81cf48e2050de3af7469936bd33a7a89a320b121a73db95273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bolmatov, Dima</creatorcontrib><creatorcontrib>Zhernenkov, Mikhail</creatorcontrib><creatorcontrib>Zav’yalov, Dmitry</creatorcontrib><creatorcontrib>Stoupin, Stanislav</creatorcontrib><creatorcontrib>Cai, Yong Q</creatorcontrib><creatorcontrib>Cunsolo, Alessandro</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bolmatov, Dima</au><au>Zhernenkov, Mikhail</au><au>Zav’yalov, Dmitry</au><au>Stoupin, Stanislav</au><au>Cai, Yong Q</au><au>Cunsolo, Alessandro</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revealing the Mechanism of the Viscous-to-Elastic Crossover in Liquids</atitle><jtitle>The journal of physical chemistry letters</jtitle><addtitle>J. Phys. Chem. Lett</addtitle><date>2015-08-06</date><risdate>2015</risdate><volume>6</volume><issue>15</issue><spage>3048</spage><epage>3053</epage><pages>3048-3053</pages><issn>1948-7185</issn><eissn>1948-7185</eissn><abstract>In this work, we report on inelastic X-ray scattering experiments combined with the molecular dynamics simulations on deeply supercritical Ar. The presented results unveil the mechanism and regimes of sound propagation in the liquid matter and provide compelling evidence for the adiabatic-to-isothermal longitudinal sound propagation transition. We introduce a Hamiltonian predicting low-frequency transverse sound propagation gaps, which is confirmed by experimental findings and molecular dynamics calculations. As a result, a universal link is established between the positive sound dispersion (PSD) phenomenon and the origin of transverse sound propagation revealing the viscous-to-elastic crossover in liquids. The PSD and transverse phononic excitations evolve consistently with theoretical predictions. Both can be considered as a universal fingerprint of the dynamic response of a liquid, which is also observable in a subdomain of supercritical phase. The simultaneous disappearance of both these effects at elevated temperatures is a manifestation of the Frenkel line. We expect that these findings will advance the current understanding of fluids under extreme thermodynamic conditions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26267201</pmid><doi>10.1021/acs.jpclett.5b01338</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1948-7185
ispartof The journal of physical chemistry letters, 2015-08, Vol.6 (15), p.3048-3053
issn 1948-7185
1948-7185
language eng
recordid cdi_osti_scitechconnect_1229329
source ACS Publications
title Revealing the Mechanism of the Viscous-to-Elastic Crossover in Liquids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T15%3A23%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revealing%20the%20Mechanism%20of%20the%20Viscous-to-Elastic%20Crossover%20in%20Liquids&rft.jtitle=The%20journal%20of%20physical%20chemistry%20letters&rft.au=Bolmatov,%20Dima&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2015-08-06&rft.volume=6&rft.issue=15&rft.spage=3048&rft.epage=3053&rft.pages=3048-3053&rft.issn=1948-7185&rft.eissn=1948-7185&rft_id=info:doi/10.1021/acs.jpclett.5b01338&rft_dat=%3Cproquest_osti_%3E1704349826%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1704349826&rft_id=info:pmid/26267201&rfr_iscdi=true