Revealing the Mechanism of the Viscous-to-Elastic Crossover in Liquids

In this work, we report on inelastic X-ray scattering experiments combined with the molecular dynamics simulations on deeply supercritical Ar. The presented results unveil the mechanism and regimes of sound propagation in the liquid matter and provide compelling evidence for the adiabatic-to-isother...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry letters 2015-08, Vol.6 (15), p.3048-3053
Hauptverfasser: Bolmatov, Dima, Zhernenkov, Mikhail, Zav’yalov, Dmitry, Stoupin, Stanislav, Cai, Yong Q, Cunsolo, Alessandro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we report on inelastic X-ray scattering experiments combined with the molecular dynamics simulations on deeply supercritical Ar. The presented results unveil the mechanism and regimes of sound propagation in the liquid matter and provide compelling evidence for the adiabatic-to-isothermal longitudinal sound propagation transition. We introduce a Hamiltonian predicting low-frequency transverse sound propagation gaps, which is confirmed by experimental findings and molecular dynamics calculations. As a result, a universal link is established between the positive sound dispersion (PSD) phenomenon and the origin of transverse sound propagation revealing the viscous-to-elastic crossover in liquids. The PSD and transverse phononic excitations evolve consistently with theoretical predictions. Both can be considered as a universal fingerprint of the dynamic response of a liquid, which is also observable in a subdomain of supercritical phase. The simultaneous disappearance of both these effects at elevated temperatures is a manifestation of the Frenkel line. We expect that these findings will advance the current understanding of fluids under extreme thermodynamic conditions.
ISSN:1948-7185
1948-7185
DOI:10.1021/acs.jpclett.5b01338