Collapse and Reversibility of the Superhydrophobic State on Nanotextured Surfaces
Superhydrophobic coatings repel liquids by trapping air inside microscopic surface textures. However, the resulting composite interface is prone to collapse under external pressure. Nanometer-size textures should facilitate more resilient coatings owing to geometry and confinement effects at the nan...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2014-05, Vol.112 (21), Article 216101 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Superhydrophobic coatings repel liquids by trapping air inside microscopic surface textures. However, the resulting composite interface is prone to collapse under external pressure. Nanometer-size textures should facilitate more resilient coatings owing to geometry and confinement effects at the nanoscale. Here, we use in situ x-ray diffraction to study the collapse of the superhydrophobic state in arrays of approximately 20 nm-wide silicon textures with cylindrical, conical, and linear features defined by block-copolymer self-assembly and plasma etching. We reveal that the superhydrophobic state vanishes above critical pressures which depend on texture shape and size. This phenomenon is irreversible for all but the conical surface textures which exhibit a spontaneous, partial reappearance of the trapped gas phase upon liquid depressurization. This process is influenced by the kinetics of gas-liquid exchange. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.112.216101 |