Effect of the mounting membrane on shape in inertial confinement fusion implosions

The performance of Inertial Confinement Fusion targets relies on the symmetric implosion of highly compressed fuel. X-ray area-backlit imaging is used to assess in-flight low mode 2D asymmetries of the shell. These time-resolved images of the shell exhibit features that can be related to the lift-of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2015-02, Vol.22 (2)
Hauptverfasser: Nagel, S. R., Haan, S. W., Rygg, J. R., Barrios, M., Benedetti, L. R., Bradley, D. K., Field, J. E., Hammel, B. A., Izumi, N., Jones, O. S., Khan, S. F., Ma, T., Pak, A. E., Tommasini, R., Town, R. P. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The performance of Inertial Confinement Fusion targets relies on the symmetric implosion of highly compressed fuel. X-ray area-backlit imaging is used to assess in-flight low mode 2D asymmetries of the shell. These time-resolved images of the shell exhibit features that can be related to the lift-off position of the membranes used to hold the capsule within the hohlraum. Here, we describe a systematic study of this membrane or “tent” thickness and its impact on the measured low modes for in-flight and self-emission images. The low mode amplitudes of the shell in-flight shape (P2 and P4) are weakly affected by the tent feature in time-resolved, backlit data. By contrast, time integrated self-emission images along the same axis exhibit a reversal in perceived P4 mode due to growth of a feature seeded by the tent, which can explain prior inconsistencies between the in-flight P4 and core P4, leading to a reevaluation of optimum hohlraum length. Simulations with a tent-like feature normalized to match the feature seen in the backlit images predict a very large impact on the capsule performance from the tent feature.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.4907179