Fluctuating orders and quenched randomness in the cuprates

We study a quasi-two-dimensional classical Landau-Ginzburg-Wilson effective field theory in the presence of quenched disorder in which incommensurate charge-density wave and superconducting orders are intertwined. The disorder precludes long-range charge-density wave order, but not superconducting o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2015-11, Vol.92 (17), Article 174505
Hauptverfasser: Nie, Laimei, Sierens, Lauren E. Hayward, Melko, Roger G., Sachdev, Subir, Kivelson, Steven A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study a quasi-two-dimensional classical Landau-Ginzburg-Wilson effective field theory in the presence of quenched disorder in which incommensurate charge-density wave and superconducting orders are intertwined. The disorder precludes long-range charge-density wave order, but not superconducting or nematic order. We select three representative sets of input parameters and compute the corresponding charge-density wave structure factors using both large-N techniques and classical Monte Carlo simulations. Where nematicity and superconductivity coexist at low temperature, the peak height of the charge-density wave structure factor decreases monotonically as a function of increasing temperature, unlike what is seen in x-ray experiments on YBa2Cu3O6+x. Conversely, where the thermal evolution of the charge-density wave structure factor qualitatively agrees with experiments, the nematic correlation length, computed to one-loop order, is shorter than the charge-density wave correlation length.
ISSN:1098-0121
1550-235X
DOI:10.1103/PhysRevB.92.174505