Identification and In-vivo Characterization of a Novel OhrR Transcriptional Regulator in Burkholderia xenovorans LB400

Transcriptional regulators (TRs) are an important and versatile group of proteins, yet very little progress has been achieved towards the discovery and annotation of their biological functions. We have characterized a previously unknown organic hydroperoxide resistance regulator from Burkholderia xe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology research 2013-05, Vol.3 (1), p.37-37
Hauptverfasser: Nguyen, Tinh T., Martí-Arbona, Ricardo, Hall, Richard S., Maity, Tuhin, Valdez, Yolanda E., Dunbar, John M., Unkefer, Clifford J., Unkefer, Pat J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transcriptional regulators (TRs) are an important and versatile group of proteins, yet very little progress has been achieved towards the discovery and annotation of their biological functions. We have characterized a previously unknown organic hydroperoxide resistance regulator from Burkholderia xenovoransLBAOO, Bxe_B2842, which is homologous to E. coli's OhrR. Bxe_B2842 regulates the expression of an organic hydroperoxide resistance protein (OsmC). We utilized frontal affinity chromatography coupled with mass spectrometry (FAC-MS) and electrophoretic mobility gel shift assays (EMSA) to identify and characterize the possible effectors of the regulation by Bxe_B2842. Without an effector, Bxe_B2842 binds a DNA operator sequence (DOS) upstream of osmC. FAC-MS results suggest that 2-aminophenol binds to the protein and is potentially an effector molecule. EMSA analysis shows that 2-aminophenol attenuates the Bxe_B2842's affinity for its DOS. EMSA analysis also shows that organic peroxides attenuate Bxe_B2842/DOS affinity, suggesting that binding of the TR to its DOS is regulated by the two-cysteine mechanism, common to TRs in this family. Bxe_B2842 is the first OhrR TR to have both oxidative and effector-binding mechanisms of regulation. This paper reveals further mechanistic diversity TR mediated gene regulation and provides insights into methods for function discovery of TRs.
ISSN:1925-430X
1925-4318
DOI:10.5539/jmbr.v3n1p37