The high-energy-density counterpropagating shear experiment and turbulent self-heating

The counterpropagating shear experiment has previously demonstrated the ability to create regions of shock-driven shear, balanced symmetrically in pressure, and experiencing minimal net drift. This allows for the creation of a high-Mach-number high-energy-density shear environment. New data from the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2013-12, Vol.20 (12)
Hauptverfasser: Doss, F. W., Fincke, J. R., Loomis, E. N., Welser-Sherrill, L., Flippo, K. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The counterpropagating shear experiment has previously demonstrated the ability to create regions of shock-driven shear, balanced symmetrically in pressure, and experiencing minimal net drift. This allows for the creation of a high-Mach-number high-energy-density shear environment. New data from the counterpropagating shear campaign is presented, and both hydrocode modeling and theoretical analysis in the context of a Reynolds-averaged-Navier-Stokes model suggest turbulent dissipation of energy from the supersonic flow bounding the layer is a significant driver in its expansion. A theoretical minimum shear flow Mach number threshold is suggested for substantial thermal-turbulence coupling.
ISSN:1070-664X
1089-7674
DOI:10.1063/1.4839115